Составители:
Рубрика:
113
Решение. Обозначим через случайную величину,
равную числу попыток открывания замка. Найдем ее закон
распределения.
4321
4321
:ξ
pppp
Введем следующие события: А
i
– замок открыт с i-ой
попытки (i = 1,2,3,4).
Тогда имеем:
4
1
)()1ξ(
11
APPp
;
4
1
3
1
4
3
)/()()()2ξ(
121212
AAPAPAAPPp
;
)/()/()()()3ξ(
1231213213
AAAPAAPAPAAAPPp
4
1
2
1
3
2
4
3
;
)/()/()()()4ξ(
12312143214
AAAPAAPAPAAAAPPp
4
1
1
2
1
3
2
4
3
)/(
3214
AAAAP
.
Окончательно, имеем
4
1
4
1
4
1
4
1
4321
:ξ
Математическое ожидание, дисперсию и СКО найдем
согласно определению
5,2
2
5
4
10
4
1
4
4
1
3
4
1
2
4
1
1
44332211ξ
pxpxpxpxm
.
.25,1
2
5,2
4
)5,1()5,0()5,0()5,1(
)()()()(
2222
4
2
ξ43
2
ξ32
2
ξ21
2
ξ1ξ
pmxpmxpmxpmxD
1,125,1σ
ξξ
D
.
Страницы
- « первая
- ‹ предыдущая
- …
- 111
- 112
- 113
- 114
- 115
- …
- следующая ›
- последняя »
