Теория относительности. Учебное пособие. Розман Г.А. - 10 стр.

UptoLike

Составители: 

Рубрика: 

18
19
xkF
óïð
r
r
=
è ñèëà ãðàâèòàöèîííîãî âçàèìîäåéñòâèÿ
,
2
r
mM
F
òÿã
γ
=
ãäå
γα
,, k
ïîñòîÿííûå êîýôôèöèåíòû, à
1212
,
xxxuuv
îòí
rrrrrr
==
,
r
 ñîîòâåòñòâåííî îòíîñèòåëüíàÿ
ñêîðîñòü äâèæåíèÿ îäíîãî òåëà îòíîñèòåëüíîãî äðóãîãî, âåëè-
÷èíà äåôîðìàöèè è ðàññòîÿíèå ìåæäó òÿãîòåþùèìè òåëàìè. Íî
âñå ýòè âåëè÷èíû, êàê áûëî ïîêàçàíî âûøå, ÿâëÿþòñÿ àá-
ñîëþòíûìè, èíâàðèàíòíûìè âåëè÷èíàìè. Ñëåäîâàòåëüíî è
ôîðìóëà 2-ãî çàêîíà ìåõàíèêè ñîõðàíÿåò ñâîé âèä, è âåëè÷èíû,
âõîäÿùèå â íåå, íå èçìåíÿþò ñâîåãî ÷èñëåííîãî çíà÷åíèÿ ïðè
ïåðåõîäå îò îäíîé ÈÑÎ ê äðóãîé ïðè ïîìîùè ôîðìóë Ãàëèëåÿ.
Òàêèì îáðàçîì, 2-é çàêîí ìåõàíèêè ÿâëÿåòñÿ àáñîëþòíûì,
èíâàðèàíòíûì çàêîíîì, ò.å. îí ñïðàâåäëèâ â ëþáîé ÈÑÎ. Íî ýòî
æå óòâåðæäàåò è ïðèíöèï îòíîñèòåëüíîñòè Ãàëèëåÿ: âî âñåõ ÈÑÎ
ìåõàíè÷åñêèå ÿâëåíèÿ ïðè îäèíàêîâûõ óñëîâèÿõ ïðîòåêàþò
îäèíàêîâî. Ó ïðèíöèïà îòíîñèòåëüíîñòè åñòü è äðóãàÿ, òàê
íàçûâàåìàÿ îòðèöàòåëüíàÿ ôîðìóëèðîâêà: íåëüçÿ, ñòàâÿ âíóòðè
ÈÑÎ ìåõàíè÷åñêèå îïûòû, óñòàíîâèòü, äâèæåòñÿ èëè ïîêîèòñÿ
äàííàÿ ÈÑÎ. Äðóãèìè ñëîâàìè, ðàâíîìåðíîå, ïðÿìîëèíåéíîå
äâèæåíèå è ïîêîé îòíîñèòåëüíû, íåò âîçìîæíîñòè, íàáëþäàÿ
ìåõàíè÷åñêèå ÿâëåíèÿ, îáíàðóæèòü àáñîëþòíûé ïîêîé è
äâèæåíèå. Ýòîò âûâîä îòðèöàåò ñóùåñòâîâàíèå àáñîëþòíîãî
ïðîñòðàíñòâà è âðåìåíè è ñâÿçàííîãî ñ íèìè àáñîëþòíîãî
äâèæåíèÿ è ïîêîÿ, òî÷íåå, îòðèöàåò âîçìîæíîñòü îáíàðóæèòü
àáñîëþòíîå ïðîñòðàíñòâî è âðåìÿ, íàáëþäàÿ ëèøü ìåõàíè÷åñêèå
ÿâëåíèÿ.
Íî ïî íüþòîíîâñêèì ïðåäñòàâëåíèÿì òàêèå àáñîëþòíûå
ïðîñòðàíñòâî è âðåìÿ äîëæíû ñóùåñòâîâàòü. È ôèçèêè ðåøèëè
èñêàòü èõ, èñïîëüçóÿ äðóãèå, íåìåõàíè÷åñêèå ïðîöåññû, íàïðèìåð,
îïòè÷åñêèå. Íà÷àëñÿ íîâûé ýòàï ðàçâèòèÿ ôèçèêè, êîòîðûé è
ïðèâåë â êîíöå êîíöîâ ê âîçíèêíîâåíèþ ñïåöèàëüíîé òåîðèè
îòíîñèòåëüíîñòè, ê ðåâîëþöèè â ôèçè÷åñêîé íàóêå.
§ 3. Ðåøåíèå çàäà÷ ñ âûáîðîì ðàçëè÷íûõ ñèñòåì îòñ÷åòà
Ïðèíöèï îòíîñèòåëüíîñòè  îäèí èç îñíîâíûõ ïðèíöèïîâ
ñîâðåìåííîé ôèçèêè, ïîçâîëÿþùèé óâèäåòü åäèíñòâî ôèçèêè êàê
íàóêè î ïðèðîäå. Äëÿ âûÿâëåíèÿ ãëóáîêîãî ôèçè÷åñêîãî è ôèëî-
ñîôñêîãî ñîäåðæàíèÿ ýòîãî ïðèíöèïà íåîáõîäèìî â ïåðâóþ î÷å-
ðåäü ïîíÿòü ðîëü è øèðîêî èñïîëüçîâàòü ñèñòåìó îòñ÷åòà, âûñ-
òóïàþùåé êàê ôèçè÷åñêàÿ ëàáîðàòîðèÿ.
 ñèëó ðàâíîïðàâèÿ âñåõ ÈÑÎ, èññëåäîâàòåëþ ïðåäîñòàâëÿåòñÿ
âîçìîæíîñòü âûáîðà ëþáîé ÈÑÎ. Îäíàêî òîëüêî èíòóèöèÿ, ïðè-
îáðåòàåìàÿ ïðè ìíîãîêðàòíûõ òðåíèðîâêàõ ïðè ðåøåíèè çàäà÷,
ïîäñêàæåò òó ÈÑÎ, â êîòîðîé íàèáîëåå ïðîñòî ôèçè÷åñêè è ìà-
òåìàòè÷åñêè ïðåäñòàíåò èçó÷àåìûé ïðîöåññ.  äàëüíåéøåì ìû
ïîñòîÿííî áóäåì ðàáîòàòü ñ ðàçëè÷íûìè ÈÑÎ, ïîýòîìó áóäåò
åñòåñòâåííûì, åñëè íà ðÿäå ïðèìåðîâ ïîêàæåì âîçìîæíîñòè â
âûáîðå ÈÑÎ ïðè ðåøåíèè íåñêîëüêèõ êèíåìàòè÷åñêèõ çàäà÷.
Áóäåì ñëåäîâàòü ñëåäóþùåìó ïëàíó ðåøåíèÿ: ïîñëå àíàëèçà
óñëîâèÿ çàäà÷è è êðàòêîé çàïèñè, âûáèðàåì òó ÈÑÎ, â êîòîðîé,
êàê íàì êàæåòñÿ (âåäü âñå ÈÑÎ ðàâíîïðàâíû!), ðåøåíèå áóäåò
ôèçè÷åñêè áîëåå ÿñíûì è ìàòåìàòè÷åñêè áîëåå ðàöèîíàëüíûì; â
âûáðàííîé ÈÑÎ ñòðîèì ÷åðòåæ (ðèñóíîê èëè ñõåìó), ïðîâîäèì
àíàëèòè÷åñêîå ðåøåíèå; â êîíå÷íîå âûðàæåíèå äëÿ èñêîìîé âå-
ëè÷èíû ïîäñòàâëÿåì ÷èñëåííûå çíà÷åíèÿ ñ íàèìåíîâàíèÿìè.
Ïîñëå ïðîâåðêè ðàçìåðíîñòè îòâåòà, íàõîäèì åãî ÷èñëåííîå çíà-
÷åíèå è, ïðè íàäîáíîñòè, àíàëèçèðóåì îòâåò. Òàêîé ïëàí, â ïðèí-
öèïå, ïðèãîäåí äëÿ ðåøåíèÿ çàäà÷ ïî âñåì ðàçäåëàì ôèçèêè.
Çàäà÷à ¹ 1.
Ëîäî÷íèê, ïðîïëûâàÿ ïîä ìîñòîì ïðîòèâ òå÷åíèÿ, ïîòåðÿë çà-
ïàñíîå âåñëî. ×åðåç íåêîòîðîå âðåìÿ îí îáíàðóæèë ïðîïàæó, ðàç-
âåðíóë ëîäêó è ÷åðåç ÷àñ â òðåõ êèëîìåòðàõ íèæå ìîñòà äîãíàë
âåñëî. Îïðåäåëèòü ñêîðîñòü âîäû.
Íàéòè
â
v
Äàíî
êìl
÷t
3
1
=
=
                           r          r                                  § 3. Ðåøåíèå çàäà÷ ñ âûáîðîì ðàçëè÷íûõ ñèñòåì îòñ÷åòà
                           F óïð = −k∆x
è ñèëà ãðàâèòàöèîííîãî     âçàèìîäåéñòâèÿ                               Ïðèíöèï îòíîñèòåëüíîñòè — îäèí èç îñíîâíûõ ïðèíöèïîâ
                          Fòÿã = γ
                                     mM
                                          ,
                                                                     ñîâðåìåííîé ôèçèêè, ïîçâîëÿþùèé óâèäåòü åäèíñòâî ôèçèêè êàê
                                     r2                              íàóêè î ïðèðîäå. Äëÿ âûÿâëåíèÿ ãëóáîêîãî ôèçè÷åñêîãî è ôèëî-
ãäå          α , k , γ —ïîñòîÿííûå          êîýôôèöèåíòû,        à   ñîôñêîãî ñîäåðæàíèÿ ýòîãî ïðèíöèïà íåîáõîäèìî â ïåðâóþ î÷å-
r      r     r      r r      r                                       ðåäü ïîíÿòü ðîëü è øèðîêî èñïîëüçîâàòü ñèñòåìó îòñ÷åòà, âûñ-
vîòí = u 2 − u1 , ∆x = x 2 − x1 , r — ñîîòâåòñòâåííî îòíîñèòåëüíàÿ
                                                                     òóïàþùåé êàê ôèçè÷åñêàÿ ëàáîðàòîðèÿ.
ñêîðîñòü äâèæåíèÿ îäíîãî òåëà îòíîñèòåëüíîãî äðóãîãî, âåëè-             Â ñèëó ðàâíîïðàâèÿ âñåõ ÈÑÎ, èññëåäîâàòåëþ ïðåäîñòàâëÿåòñÿ
÷èíà äåôîðìàöèè è ðàññòîÿíèå ìåæäó òÿãîòåþùèìè òåëàìè. Íî            âîçìîæíîñòü âûáîðà ëþáîé ÈÑÎ. Îäíàêî òîëüêî èíòóèöèÿ, ïðè-
âñå ýòè âåëè÷èíû, êàê áûëî ïîêàçàíî âûøå, ÿâëÿþòñÿ àá-               îáðåòàåìàÿ ïðè ìíîãîêðàòíûõ òðåíèðîâêàõ ïðè ðåøåíèè çàäà÷,
ñîëþòíûìè, èíâàðèàíòíûìè âåëè÷èíàìè. Ñëåäîâàòåëüíî è                 ïîäñêàæåò òó ÈÑÎ, â êîòîðîé íàèáîëåå ïðîñòî ôèçè÷åñêè è ìà-
ôîðìóëà 2-ãî çàêîíà ìåõàíèêè ñîõðàíÿåò ñâîé âèä, è âåëè÷èíû,         òåìàòè÷åñêè ïðåäñòàíåò èçó÷àåìûé ïðîöåññ.  äàëüíåéøåì ìû
âõîäÿùèå â íåå, íå èçìåíÿþò ñâîåãî ÷èñëåííîãî çíà÷åíèÿ ïðè           ïîñòîÿííî áóäåì ðàáîòàòü ñ ðàçëè÷íûìè ÈÑÎ, ïîýòîìó áóäåò
ïåðåõîäå îò îäíîé ÈÑÎ ê äðóãîé ïðè ïîìîùè ôîðìóë Ãàëèëåÿ.            åñòåñòâåííûì, åñëè íà ðÿäå ïðèìåðîâ ïîêàæåì âîçìîæíîñòè â
     Òàêèì îáðàçîì, 2-é çàêîí ìåõàíèêè ÿâëÿåòñÿ àáñîëþòíûì,          âûáîðå ÈÑÎ ïðè ðåøåíèè íåñêîëüêèõ êèíåìàòè÷åñêèõ çàäà÷.
èíâàðèàíòíûì çàêîíîì, ò.å. îí ñïðàâåäëèâ â ëþáîé ÈÑÎ. Íî ýòî            Áóäåì ñëåäîâàòü ñëåäóþùåìó ïëàíó ðåøåíèÿ: ïîñëå àíàëèçà
æå óòâåðæäàåò è ïðèíöèï îòíîñèòåëüíîñòè Ãàëèëåÿ: âî âñåõ ÈÑÎ         óñëîâèÿ çàäà÷è è êðàòêîé çàïèñè, âûáèðàåì òó ÈÑÎ, â êîòîðîé,
ìåõàíè÷åñêèå ÿâëåíèÿ ïðè îäèíàêîâûõ óñëîâèÿõ ïðîòåêàþò               êàê íàì êàæåòñÿ (âåäü âñå ÈÑÎ ðàâíîïðàâíû!), ðåøåíèå áóäåò
îäèíàêîâî. Ó ïðèíöèïà îòíîñèòåëüíîñòè åñòü è äðóãàÿ, òàê             ôèçè÷åñêè áîëåå ÿñíûì è ìàòåìàòè÷åñêè áîëåå ðàöèîíàëüíûì; â
íàçûâàåìàÿ îòðèöàòåëüíàÿ ôîðìóëèðîâêà: íåëüçÿ, ñòàâÿ âíóòðè          âûáðàííîé ÈÑÎ ñòðîèì ÷åðòåæ (ðèñóíîê èëè ñõåìó), ïðîâîäèì
ÈÑÎ ìåõàíè÷åñêèå îïûòû, óñòàíîâèòü, äâèæåòñÿ èëè ïîêîèòñÿ            àíàëèòè÷åñêîå ðåøåíèå; â êîíå÷íîå âûðàæåíèå äëÿ èñêîìîé âå-
äàííàÿ ÈÑÎ. Äðóãèìè ñëîâàìè, ðàâíîìåðíîå, ïðÿìîëèíåéíîå              ëè÷èíû ïîäñòàâëÿåì ÷èñëåííûå çíà÷åíèÿ ñ íàèìåíîâàíèÿìè.
äâèæåíèå è ïîêîé îòíîñèòåëüíû, íåò âîçìîæíîñòè, íàáëþäàÿ             Ïîñëå ïðîâåðêè ðàçìåðíîñòè îòâåòà, íàõîäèì åãî ÷èñëåííîå çíà-
ìåõàíè÷åñêèå ÿâëåíèÿ, îáíàðóæèòü àáñîëþòíûé ïîêîé è                  ÷åíèå è, ïðè íàäîáíîñòè, àíàëèçèðóåì îòâåò. Òàêîé ïëàí, â ïðèí-
äâèæåíèå. Ýòîò âûâîä îòðèöàåò ñóùåñòâîâàíèå àáñîëþòíîãî              öèïå, ïðèãîäåí äëÿ ðåøåíèÿ çàäà÷ ïî âñåì ðàçäåëàì ôèçèêè.
ïðîñòðàíñòâà è âðåìåíè è ñâÿçàííîãî ñ íèìè àáñîëþòíîãî
äâèæåíèÿ è ïîêîÿ, òî÷íåå, îòðèöàåò âîçìîæíîñòü îáíàðóæèòü                                       Çàäà÷à ¹ 1.
àáñîëþòíîå ïðîñòðàíñòâî è âðåìÿ, íàáëþäàÿ ëèøü ìåõàíè÷åñêèå             Ëîäî÷íèê, ïðîïëûâàÿ ïîä ìîñòîì ïðîòèâ òå÷åíèÿ, ïîòåðÿë çà-
ÿâëåíèÿ.                                                             ïàñíîå âåñëî. ×åðåç íåêîòîðîå âðåìÿ îí îáíàðóæèë ïðîïàæó, ðàç-
     Íî ïî íüþòîíîâñêèì ïðåäñòàâëåíèÿì òàêèå àáñîëþòíûå              âåðíóë ëîäêó è ÷åðåç ÷àñ â òðåõ êèëîìåòðàõ íèæå ìîñòà äîãíàë
ïðîñòðàíñòâî è âðåìÿ äîëæíû ñóùåñòâîâàòü. È ôèçèêè ðåøèëè            âåñëî. Îïðåäåëèòü ñêîðîñòü âîäû.
èñêàòü èõ, èñïîëüçóÿ äðóãèå, íåìåõàíè÷åñêèå ïðîöåññû, íàïðèìåð,
                                                                     Íàéòè       vâ
îïòè÷åñêèå. Íà÷àëñÿ íîâûé ýòàï ðàçâèòèÿ ôèçèêè, êîòîðûé è
ïðèâåë â êîíöå êîíöîâ ê âîçíèêíîâåíèþ ñïåöèàëüíîé òåîðèè                        t = 1÷
îòíîñèòåëüíîñòè, ê ðåâîëþöèè â ôèçè÷åñêîé íàóêå.                     Äàíî       l = 3 êì

18                                                                                                                               19