Теория относительности. Учебное пособие. Розман Г.А. - 15 стр.

UptoLike

Составители: 

Рубрика: 

28
29
ïîëóïðîçðà÷íóþ ïëàñòèíêó À è ðàçäåëÿåòñÿ íà äâà ëó÷à. Îäíà
÷àñòü ëó÷à èäåò ïî ïóòè ABCDE, äðóãàÿ  ïî ïóòè ADCBAE. Â
ïðèáîðå Å ëó÷è ñõîäÿòñÿ è èíòåðôåðèðóþò.
Ó îáîèõ ëó÷åé óñëîâèÿ ðàñïðîñòðàíåíèÿ ñîâåðøåííî îäèíà-
êîâû äî òåõ ïîð, ïîêà æèäêîñòü â òðóáå íåïîäâèæíà; åñëè æå
ïðèâåñòè â äâèæåíèå æèäêîñòü, òî îäèí ëó÷ áóäåò èäòè ïî
íàïðàâëåíèþ òîêà æèäêîñòè, äðóãîé  íàâñòðå÷ó, óñëîâèÿ äëÿ
äâèæåíèÿ ëó÷åé èçìåíÿòñÿ, âîçíèêíåò îïòè÷åñêàÿ ðàçíîñòü õîäà,
êîòîðàÿ çàâèñèò îò ñêîðîñòè äâèæåíèÿ æèäêîñòè. Â ðåçóëüòàòå
èçìåíèòñÿ èíòåðôåðåíöèîííàÿ êàðòèíà, è ïî åå èçìåíåíèþ ìîæíî
ñóäèòü îá óâëå÷åíèè ýôèðà äâèæóùåéñÿ ñðåäîé. Îïûò ïîäòâåðäèë
ôîðìóëó (4.2), ãäå êîýôôèöèåíò
k
(êîýôôèöèåíò óâëå÷åíèÿ
Ôðåíåëÿ) îêàçàëñÿ ðàâíûì
,
1
1
2
n
k =
n
 ïîêàçàòåëü ïðåëîìëåíèÿ äâèæóùåéñÿ ñðåäû.
Èòàê, îïûò Ôèçî äëÿ ñâîåãî îáúÿñíåíèÿ òðåáîâàë, ÷òîáû
ýôèð ÷àñòè÷íî óâëåêàëñÿ äâèæóùåéñÿ ñðåäîé.
Ïðîáëåìà ýôèðà îáðàñòàëà âîïðîñàìè. Ïî ñâîåìó ñìûñëó
ýôèð äîëæåí ïðåäñòàâëÿòü ñîáîé íàèëåã÷àéøåå âåùåñòâî ñ
íè÷òîæíîé ïëîòíîñòüþ, ÷òîáû íå îêàçûâàòü ñîïðîòèâëåíèÿ
äâèæåíèþ òåë, â òîì ÷èñëå ïëàíåòàì è çâåçäàì. Ñ äðóãîé ñòîðîíû,
áûëî óñòàíîâëåíî, ÷òî ñâåòîâûå âîëíû ÿâëÿþòñÿ ïîïåðå÷íûìè
âîëíàìè. Íî òàêèå âîëíû ìîãóò ñóùåñòâîâàòü òîëüêî â òâåðäûõ
òåëàõ, à ó÷èòûâàÿ ãèãàíòñêóþ ñêîðîñòü ñâåòà, íóæíî áûëî
ñ÷èòàòü, ÷òî ïëîòíîñòü ýôèðà (åãî óïðóãîñòü) òàêæå äîëæíà áûòü
÷ðåçâû÷àéíî áîëüøîé. Ñ äðóãîé ñòîðîíû, â îïûòå Áðàäëåÿ ýôèð
âåäåò ñåáÿ òàê, êàê åñëè áû îí áûë àáñîëþòíî íåïîäâèæíûì â
ìèðîâîì ïðîñòðàíñòâå, â îïûòå æå Ôèçî îí óâëåêàåòñÿ
äâèæóùåéñÿ ñðåäîé.
Íî íàïîìíèì, çà÷åì ýôèð áûë íóæåí êëàññè÷åñêîé ôèçèêå.
Îí íàñòîÿòåëüíî áûë íåîáõîäèì êëàññè÷åñêîé ôèçèêå íå òîëüêî
êàê ñâåòîíîñíàÿ ñðåäà, íî è êàê ñðåäà, ñ êîòîðîé ìîæíî áûëî áû
ñâÿçàòü àáñîëþòíóþ ñèñòåìó îòñ÷åòà, îòíîñèòåëüíî êîòîðîé â
äóõå Íüþòîíà äâèæåíèå è ïîêîé èìåëè áû àáñîëþòíûé õàðàêòåð.
îðáèòå âîêðóã Ñîëíöà, ôðîíò ñâåòîâîé âîëíû ïåðåìåñòèòñÿ îò
îáúåêòèâà äî îêóëÿðà íà ðàññòîÿíèå
.ct
Äëÿ îïðåäåëåíèÿ óãëà
íàêëîíà îñè òðóáû ìîæíî ñîñòàâèòü ñëåäóþùåå ñîîòíîøåíèå:
.
c
v
ct
vt
tg ==
α
(4.1)
Àñòðîíîìè÷åñêèå íàáëþäåíèÿ õîðîøî ïîäòâåðæäàþò
ýòó ôîðìóëó.
 1818 ã. ôðàíöóçñêèé ôèçèê Ôðåíåëü äàë òåîðåòè÷åñêîå
îïèñàíèå îïûòà, â êîòîðîì ðàññìàòðèâàëîñü ðàñïðîñòðàíåíèå
ñâåòà â äâèæóùåéñÿ ñðåäå.  îïûòå ñòàâèëàñü çàäà÷à: âûÿñíèòü,
êàê âåäåò ñåáÿ ýôèð â äâèæóùåéñÿ ñðåäå. Ðàñ÷åòû ïîêàçûâàëè,
÷òî ýôèð äîëæåí ÷àñòè÷íî óâëåêàòüñÿ äâèæóùåéñÿ ñðåäîé, à
ïîýòîìó â ôîðìóëó òåîðåìû ñëîæåíèÿ ñêîðîñòåé íåîáõîäèìî
ââåñòè ïîïðàâêó, ôîðìóëà ïðèíèìàëà âèä:
.kvuu =
(4.2)
 1851 ã. ôðàíöóçñêèé ôèçèê Ôèçî îñóùåñòâèë ýêñïåðèìåíò,
èäåþ êîòîðîãî ïðåäëîæèë Ôðåíåëü. Îïûò äàë õîðîøåå
ñîâïàäåíèå ñ òåîðåòè÷åñêèìè ðàñ÷åòàìè. Ñóòü îïûòà ñîñòîÿëà â
ñëåäóþùåì (ðèñ.6). Ëó÷ ñâåòà îò èñòî÷íèêà S ïîïàäàåò íà
Ðèñ.6.
v
r
v
r
A
B
C
D
E
S
îðáèòå âîêðóã Ñîëíöà, ôðîíò ñâåòîâîé âîëíû ïåðåìåñòèòñÿ îò      ïîëóïðîçðà÷íóþ ïëàñòèíêó À è ðàçäåëÿåòñÿ íà äâà ëó÷à. Îäíà
îáúåêòèâà äî îêóëÿðà íà ðàññòîÿíèå ct. Äëÿ îïðåäåëåíèÿ óãëà     ÷àñòü ëó÷à èäåò ïî ïóòè ABCDE, äðóãàÿ — ïî ïóòè ADCBAE. Â
íàêëîíà îñè òðóáû ìîæíî ñîñòàâèòü ñëåäóþùåå ñîîòíîøåíèå:        ïðèáîðå Å ëó÷è ñõîäÿòñÿ è èíòåðôåðèðóþò.
                         vt v                                       Ó îáîèõ ëó÷åé óñëîâèÿ ðàñïðîñòðàíåíèÿ ñîâåðøåííî îäèíà-
                 tgα =     = .                       (4.1)      êîâû äî òåõ ïîð, ïîêà æèäêîñòü â òðóáå íåïîäâèæíà; åñëè æå
                         ct c
                                                                ïðèâåñòè â äâèæåíèå æèäêîñòü, òî îäèí ëó÷ áóäåò èäòè ïî
     Àñòðîíîìè÷åñêèå íàáëþäåíèÿ õîðîøî ïîäòâåðæäàþò
                                                                íàïðàâëåíèþ òîêà æèäêîñòè, äðóãîé — íàâñòðå÷ó, óñëîâèÿ äëÿ
ýòó ôîðìóëó.
                                                                äâèæåíèÿ ëó÷åé èçìåíÿòñÿ, âîçíèêíåò îïòè÷åñêàÿ ðàçíîñòü õîäà,
      1818 ã. ôðàíöóçñêèé ôèçèê Ôðåíåëü äàë òåîðåòè÷åñêîå
                                                                êîòîðàÿ çàâèñèò îò ñêîðîñòè äâèæåíèÿ æèäêîñòè. Â ðåçóëüòàòå
îïèñàíèå îïûòà, â êîòîðîì ðàññìàòðèâàëîñü ðàñïðîñòðàíåíèå
                                                                èçìåíèòñÿ èíòåðôåðåíöèîííàÿ êàðòèíà, è ïî åå èçìåíåíèþ ìîæíî
ñâåòà â äâèæóùåéñÿ ñðåäå.  îïûòå ñòàâèëàñü çàäà÷à: âûÿñíèòü,
                                                                ñóäèòü îá óâëå÷åíèè ýôèðà äâèæóùåéñÿ ñðåäîé. Îïûò ïîäòâåðäèë
êàê âåäåò ñåáÿ ýôèð â äâèæóùåéñÿ ñðåäå. Ðàñ÷åòû ïîêàçûâàëè,
                                                                ôîðìóëó (4.2), ãäå êîýôôèöèåíò k (êîýôôèöèåíò óâëå÷åíèÿ
÷òî ýôèð äîëæåí ÷àñòè÷íî óâëåêàòüñÿ äâèæóùåéñÿ ñðåäîé, à
ïîýòîìó â ôîðìóëó òåîðåìû ñëîæåíèÿ ñêîðîñòåé íåîáõîäèìî         Ôðåíåëÿ) îêàçàëñÿ ðàâíûì
ââåñòè ïîïðàâêó, ôîðìóëà ïðèíèìàëà âèä:                                                   k = 1−
                                                                                                   1
                                                                                                        ,
                  u ′ = u − kv.                       (4.2)                                        n2
      1851 ã. ôðàíöóçñêèé ôèçèê Ôèçî îñóùåñòâèë ýêñïåðèìåíò,   n — ïîêàçàòåëü ïðåëîìëåíèÿ      äâèæóùåéñÿ ñðåäû.
èäåþ êîòîðîãî ïðåäëîæèë Ôðåíåëü. Îïûò äàë õîðîøåå                    Èòàê, îïûò Ôèçî äëÿ ñâîåãî îáúÿñíåíèÿ òðåáîâàë, ÷òîáû
ñîâïàäåíèå ñ òåîðåòè÷åñêèìè ðàñ÷åòàìè. Ñóòü îïûòà ñîñòîÿëà â    ýôèð ÷àñòè÷íî óâëåêàëñÿ äâèæóùåéñÿ ñðåäîé.
ñëåäóþùåì (ðèñ.6). Ëó÷ ñâåòà îò èñòî÷íèêà S ïîïàäàåò íà              Ïðîáëåìà ýôèðà îáðàñòàëà âîïðîñàìè. Ïî ñâîåìó ñìûñëó
                                                                ýôèð äîëæåí ïðåäñòàâëÿòü ñîáîé íàèëåã÷àéøåå âåùåñòâî ñ
                             r                                  íè÷òîæíîé ïëîòíîñòüþ, ÷òîáû íå îêàçûâàòü ñîïðîòèâëåíèÿ
                             v
                                                                äâèæåíèþ òåë, â òîì ÷èñëå ïëàíåòàì è çâåçäàì. Ñ äðóãîé ñòîðîíû,
                                                                áûëî óñòàíîâëåíî, ÷òî ñâåòîâûå âîëíû ÿâëÿþòñÿ ïîïåðå÷íûìè
                                                                âîëíàìè. Íî òàêèå âîëíû ìîãóò ñóùåñòâîâàòü òîëüêî â òâåðäûõ
                  D                             C               òåëàõ, à ó÷èòûâàÿ ãèãàíòñêóþ ñêîðîñòü ñâåòà, íóæíî áûëî
                                                                ñ÷èòàòü, ÷òî ïëîòíîñòü ýôèðà (åãî óïðóãîñòü) òàêæå äîëæíà áûòü
                                                                ÷ðåçâû÷àéíî áîëüøîé. Ñ äðóãîé ñòîðîíû, â îïûòå Áðàäëåÿ ýôèð
                                                                âåäåò ñåáÿ òàê, êàê åñëè áû îí áûë àáñîëþòíî íåïîäâèæíûì â
                                                                ìèðîâîì ïðîñòðàíñòâå, â îïûòå æå Ôèçî îí óâëåêàåòñÿ
                                                                äâèæóùåéñÿ ñðåäîé.
             A                                  B                    Íî íàïîìíèì, çà÷åì ýôèð áûë íóæåí êëàññè÷åñêîé ôèçèêå.
     S
                                                                Îí íàñòîÿòåëüíî áûë íåîáõîäèì êëàññè÷åñêîé ôèçèêå íå òîëüêî
                 E                                              êàê ñâåòîíîñíàÿ ñðåäà, íî è êàê ñðåäà, ñ êîòîðîé ìîæíî áûëî áû
                             r                                  ñâÿçàòü àáñîëþòíóþ ñèñòåìó îòñ÷åòà, îòíîñèòåëüíî êîòîðîé â
                             v
                                                                äóõå Íüþòîíà äâèæåíèå è ïîêîé èìåëè áû àáñîëþòíûé õàðàêòåð.
                                     Ðèñ.6.

28                                                                                                                          29