Теория относительности. Учебное пособие. Розман Г.А. - 85 стр.

UptoLike

Составители: 

Рубрика: 

166
167
20 ëåò ïðîáëåìîé òÿãîòåíèÿ çàíèìàëñÿ âåëèêèé àíãëèéñêèé
ôèçèê Èñààê Íüþòîí (1643-1727). Ïðîäîëæèòåëüíîñòü ðàáîòû áûëà
ñâÿçàíà ñ òåì, ÷òî åãî ðàñ÷åòû äàâàëè âåëè÷èíû, äàæå ãðóáî íå
ñîâïàäàþùèå ñ ýêñïåðèìåíòàëüíûìè äàííûìè. Íî ê 1684 ã. áûëè
óòî÷íåíû íåîáõîäèìûå äëÿ ðàñ÷åòîâ âåëè÷èíû - ðàäèóñ Çåìëè è
ñðåäíåå ðàññòîÿíèå îò Çåìëè äî Ëóíû. È òîãäà ïåðåðàñ÷åò äàë
õîðîøåå ñîâïàäåíèå òåîðåòè÷åñêèõ è ýêñïåðèìåíòàëüíûõ âåëè÷èí.
Ýòîò ãîä è ïðèíèìàåòñÿ çà äàòó îòêðûòèÿ çàêîíà Âñåìèðíîãî
òÿãîòåíèÿ. Íüþòîí íà÷àë ñ òîãî, ÷òî ðàññìîòðåë äâèæåíèå Ëóíû
âîêðóã Çåìëè. Ñîãëàñíî ôîðìóëå Ãþéãåíñà äëÿ
öåíòðîñòðåìèòåëüíîãî óñêîðåíèÿ óñêîðåíèå Ëóíû ðàâíî à
ë
=
ω
2
R,
ãäå
ω
-óãëîâàÿ ñêîðîñòü âðàùåíèÿ Ëóíû, R - ðàäèóñ åå îðáèòû.
Ñîñòàâèì îòíîøåíèå öåíòðîñòðåìèòåëüíûõ óñêîðåíèé äâóõ
òåë, îäíî èç íèõ ïóñòü íàõîäèòñÿ íà ïîâåðõíîñòè Çåìëè, âòîðûì
òåëîì áóäåò Ëóíà.
Òîãäà a
ç
=
ω
ç
2
R
ç
, à
ë
=
ω
ë
2
R
ë
è îòíîøåíèå ýòèõ ðàâåíñòâ
.
2
ëë
çç
ë
ç
R
R
à
à
ω
ω
=
(*)
Ò.ê.
Ò
π
πνω
2
2
==
, òî
ç
ë
ë
ç
Ò
Ò
=
ω
ω
èëè
.
2
2
2
2
ç
ë
ë
ç
Ò
Ò
=
ω
ω
Ïîäñòàâèì ïîëó÷åííîå çíà÷åíèå îòíîøåíèÿ êâàäðàòà
óãëîâûõ ñêîðîñòåé â ôîðìóëó (*):
ëç
çë
ç
ë
R
Ò
R
Ò
à
à
2
2
=
.
Âîñïîëüçóåìñÿ 3-èì çàêîíîì Êåïëåðà, ñîãëàñíî êîòîðîìó
.
3
3
2
2
ë
ç
ë
ç
R
R
Ò
Ò
=
Îáúåäèíÿÿ ïîñëåäíèå äâà ðàâåíñòâà, îêîí÷àòåëüíî ïîëó÷àåì
.
2
2
ç
ë
ë
ç
R
R
à
à
=
Èç ýòîãî ñîîòíîøåíèÿ Íüþòîí äåëàåò âûâîä, ÷òî
öåíòðîñòðåìèòåëüíîå óñêîðåíèå, ïðèîáðåòàåìîå òåëîì ïîä
äåéñòâèåì öåíòðàëüíîé ñèëû - ñèëû òÿãîòåíèÿ, îáðàòíî
ïðîïîðöèîíàëüíî êâàäðàòó ðàññòîÿíèÿ òåëà äî èñòî÷íèêà
òÿãîòåíèÿ.
Ñëåäóþùèé øàã â âûâîäå çàêîíà òÿãîòåíèÿ áûë òàêîé. Âñå
òåëà íà Çåìëå ïàäàþò ñ îäíèì è òåì æå óñêîðåíèåì íåçàâèñèìî
îò èõ ìàññû (ýòîò ôàêò óñòàíîâèë åùå Ãàëèëåé). Ïî âòîðîìó
çàêîíó ìåõàíèêè, êîòîðóþ ïîñòðîèë ñàì Íüþòîí, óñêîðåíèå
îïðåäåëÿåòñÿ ïî ôîðìóëå:
.
m
F
à
=
Íî åñëè óñêîðåíèå íå çàâèñèò îò ìàññû òåëà, çíà÷èò ñàìà
ñèëà F äîëæíà áûòü ïðÿìî ïðîïîðöèîíàëüíà ýòîé ìàññå. Îòñþäà
ïîëó÷àåì, ÷òî ñèëà òÿãîòåíèÿ F ~ m. Îáúåäèíÿÿ îáà âûâîäà,
êîòîðûå Íüþòîí ïîëó÷èë, àíàëèçèðóÿ äâèæåíèå Ëóíû âîêðóã
Çåìëè, ïîëó÷àåì îáùåå âûðàæåíèå äëÿ çàêîíà Âñåìèðíîãî
òÿãîòåíèÿ:
.~
2
R
m
F
òÿã
Íî òàê êàê ïî òðåòüåìó çàêîíó ìåõàíèêè ñèëà äåéñòâèÿ Çåìëè
íà Ëóíó è ïðîòèâîäåéñòâèÿ Ëóíû íà Çåìëþ ÷èñëåííî ðàâíû äðóã
äðóãó, òî ñèëà òÿãîòåíèÿ äîëæíà áûòü ïðîïîðöèîíàëüíà ìàññàì
è Çåìëè, è Ëóíû, îáîèõ òÿãîòåþùèõ òåë.
Èòàê, ñèëà òÿãîòåíèÿ ìåæäó äâóìÿ òåëàìè áóäåò
ïðîïîðöèîíàëüíà ïðîèçâåäåíèþ ìàññ òÿãîòåþùèõ òåë è îáðàòíî
ïðîïîðöèîíàëüíà êâàäðàòó ðàññòîÿíèÿ ìåæäó íèìè (òåëà
ðàññìàòðèâàþòñÿ êàê ìàòåðèàëüíûå òî÷êè. Êñòàòè, è çàêîíû
ìåõàíèêè òîæå ñïðàâåäëèâû äëÿ ìàòåðèàëüíûõ òî÷åê!):
.~
2
21
21
R
mm
F
òÿã
Ãåíèàëüíîñòü È. Íüþòîíà ïðîÿâèëàñü â òîì, ÷òî îí
ðàñïðîñòðàíèë äåéñòâèå óñòàíîâëåííîãî èì çàêîíà òÿãîòåíèÿ íà
âñå òåëà Âñåëåííîé, â òîì ÷èñëå è íà íàõîäÿùèõñÿ íà Çåìëå.
     20 ëåò ïðîáëåìîé òÿãîòåíèÿ çàíèìàëñÿ âåëèêèé àíãëèéñêèé             Èç ýòîãî ñîîòíîøåíèÿ Íüþòîí äåëàåò âûâîä, ÷òî
ôèçèê Èñààê Íüþòîí (1643-1727). Ïðîäîëæèòåëüíîñòü ðàáîòû áûëà       öåíòðîñòðåìèòåëüíîå óñêîðåíèå, ïðèîáðåòàåìîå òåëîì ïîä
ñâÿçàíà ñ òåì, ÷òî åãî ðàñ÷åòû äàâàëè âåëè÷èíû, äàæå ãðóáî íå       äåéñòâèåì öåíòðàëüíîé ñèëû - ñèëû òÿãîòåíèÿ, îáðàòíî
ñîâïàäàþùèå ñ ýêñïåðèìåíòàëüíûìè äàííûìè. Íî ê 1684 ã. áûëè         ïðîïîðöèîíàëüíî êâàäðàòó ðàññòîÿíèÿ òåëà äî èñòî÷íèêà
óòî÷íåíû íåîáõîäèìûå äëÿ ðàñ÷åòîâ âåëè÷èíû - ðàäèóñ Çåìëè è         òÿãîòåíèÿ.
ñðåäíåå ðàññòîÿíèå îò Çåìëè äî Ëóíû. È òîãäà ïåðåðàñ÷åò äàë               Ñëåäóþùèé øàã â âûâîäå çàêîíà òÿãîòåíèÿ áûë òàêîé. Âñå
õîðîøåå ñîâïàäåíèå òåîðåòè÷åñêèõ è ýêñïåðèìåíòàëüíûõ âåëè÷èí.       òåëà íà Çåìëå ïàäàþò ñ îäíèì è òåì æå óñêîðåíèåì íåçàâèñèìî
                                                                    îò èõ ìàññû (ýòîò ôàêò óñòàíîâèë åùå Ãàëèëåé). Ïî âòîðîìó
Ýòîò ãîä è ïðèíèìàåòñÿ çà äàòó îòêðûòèÿ çàêîíà Âñåìèðíîãî
                                                                    çàêîíó ìåõàíèêè, êîòîðóþ ïîñòðîèë ñàì Íüþòîí, óñêîðåíèå
òÿãîòåíèÿ. Íüþòîí íà÷àë ñ òîãî, ÷òî ðàññìîòðåë äâèæåíèå Ëóíû
                                                                    îïðåäåëÿåòñÿ ïî ôîðìóëå:
âîêðóã     Çåìëè.    Ñîãëàñíî        ôîðìóëå    Ãþéãåíñà      äëÿ
öåíòðîñòðåìèòåëüíîãî óñêîðåíèÿ óñêîðåíèå Ëóíû ðàâíî àë = ω 2R,                                         F
                                                                                                à=       .
ãäå ω -óãëîâàÿ ñêîðîñòü âðàùåíèÿ Ëóíû, R - ðàäèóñ åå îðáèòû.                                           m
     Ñîñòàâèì îòíîøåíèå öåíòðîñòðåìèòåëüíûõ óñêîðåíèé äâóõ               Íî åñëè óñêîðåíèå íå çàâèñèò îò ìàññû òåëà, çíà÷èò ñàìà
òåë, îäíî èç íèõ ïóñòü íàõîäèòñÿ íà ïîâåðõíîñòè Çåìëè, âòîðûì       ñèëà F äîëæíà áûòü ïðÿìî ïðîïîðöèîíàëüíà ýòîé ìàññå. Îòñþäà
                                                                    ïîëó÷àåì, ÷òî ñèëà òÿãîòåíèÿ F ~ m. Îáúåäèíÿÿ îáà âûâîäà,
òåëîì áóäåò Ëóíà.
                                                                    êîòîðûå Íüþòîí ïîëó÷èë, àíàëèçèðóÿ äâèæåíèå Ëóíû âîêðóã
     Òîãäà aç = ω ç2Rç, àë = ω ë2Rë è îòíîøåíèå ýòèõ ðàâåíñòâ
                                                                    Çåìëè, ïîëó÷àåì îáùåå âûðàæåíèå äëÿ çàêîíà Âñåìèðíîãî
                          à ç ω ç2 Rç                               òÿãîòåíèÿ:
                             =        .                  (*)
                          à ë ω ë Rë                                                                    m
                                                                                               Fòÿã ~      .
                                                                                                        R2
                       2π      ωç Ò ë   ω ç2 Ò ë2
      Ò.ê. ω = 2πν =      , òî ω = Ò èëè 2 = 2 .                         Íî òàê êàê ïî òðåòüåìó çàêîíó ìåõàíèêè ñèëà äåéñòâèÿ Çåìëè
                       Ò        ë   ç   ωë Òç
                                                                    íà Ëóíó è ïðîòèâîäåéñòâèÿ Ëóíû íà Çåìëþ ÷èñëåííî ðàâíû äðóã
    Ïîäñòàâèì ïîëó÷åííîå çíà÷åíèå îòíîøåíèÿ êâàäðàòà                äðóãó, òî ñèëà òÿãîòåíèÿ äîëæíà áûòü ïðîïîðöèîíàëüíà ìàññàì
óãëîâûõ ñêîðîñòåé â ôîðìóëó (*):                                    è Çåìëè, è Ëóíû, îáîèõ òÿãîòåþùèõ òåë.
                               à ë Ò ë2 Rç                               Èòàê, ñèëà òÿãîòåíèÿ ìåæäó äâóìÿ òåëàìè áóäåò
                                  =                                 ïðîïîðöèîíàëüíà ïðîèçâåäåíèþ ìàññ òÿãîòåþùèõ òåë è îáðàòíî
                               à ç Ò ç2 Rë .
                                                                    ïðîïîðöèîíàëüíà êâàäðàòó ðàññòîÿíèÿ ìåæäó íèìè (òåëà
      Âîñïîëüçóåìñÿ 3-èì çàêîíîì Êåïëåðà, ñîãëàñíî êîòîðîìó         ðàññìàòðèâàþòñÿ êàê ìàòåðèàëüíûå òî÷êè. Êñòàòè, è çàêîíû
                                Ò ç2 Rç3                            ìåõàíèêè òîæå ñïðàâåäëèâû äëÿ ìàòåðèàëüíûõ òî÷åê!):
                                    =    .
                                Ò ë2 Rë3                                                              m1 ⋅ m2
                                                                                             Fòÿã ~           .
      Îáúåäèíÿÿ ïîñëåäíèå äâà ðàâåíñòâà, îêîí÷àòåëüíî ïîëó÷àåì                                         R12− 2
                                          2                              Ãåíèàëüíîñòü È. Íüþòîíà ïðîÿâèëàñü â òîì, ÷òî îí
                                à ç Rë                              ðàñïðîñòðàíèë äåéñòâèå óñòàíîâëåííîãî èì çàêîíà òÿãîòåíèÿ íà
                                   =    .
                                à ë Rç2                             âñå òåëà Âñåëåííîé, â òîì ÷èñëå è íà íàõîäÿùèõñÿ íà Çåìëå.

166                                                                                                                            167