ВУЗ:
Составители:
Рубрика:
168
169
Èìåííî ïîýòîìó çàêîí òÿãîòåíèÿ ïîëó÷èë íàçâàíèå çàêîíà
Âñåìèðíîãî òÿãîòåíèÿ. ×òîáû íàïèñàòü çàêîí â âèäå ðàâåíñòâà,
ââîäèòñÿ êîýôôèöèåíò ïðîïîðöèîíàëüíîñòè G - ãðàâèòàöèîííàÿ
ïîñòîÿííàÿ. Òîãäà
.
2
21
21
−
⋅
=
R
mm
GF
òÿã
(3.1)
Êîýôôèöèåíò G- ýòî íàèìåíîâàííàÿ âåëè÷èíà, ýòî ñâÿçàíî
ñ òåì, ÷òî äëÿ âñåõ îñòàëüíûõ âåëè÷èí, âõîäÿùèõ â ôîðìóëó (3.1),
óæå áûëè âûáðàíû åäèíèöû èçìåðåíèÿ, êîòîðûå âìåñòå íå äàþò
íàèìåíîâàíèå ñèëû, à â ôèçèêå ìîæíî ïðèðàâíèâàòü òîëüêî
îäíîðîäíûå âåëè÷èíû (!). Ïðè ýòîì íåãëàñíî ñ÷èòàåòñÿ, ÷òî â
ôîðìóëå (3.1) ñòîèò òà æå ìàññà, êîòîðàÿ ôèãóðèðóåò â ôîðìóëå
2-ãî çàêîíà ìåõàíèêè. Ýòîò ôàêò (ðàâåíñòâî ìàññ, âõîäÿùèõ â
ðàçíûå çàêîíû) â êëàññè÷åñêîé ôèçèêå ïðèíèìàëñÿ êàê äàííûé è
íå âûçûâàë îñîáîãî âîçðàæåíèÿ. Òåì áîëåå (î ÷åì ðå÷ü áóäåò èäòè
äàëüøå) âî ìíîæåñòâå òî÷íåéøèõ îïûòîâ (ñ òî÷íîñòüþ äî 10
-12
)
íå îáíàðóæèâàëîñü ðàçëè÷èå ýòèõ âåëè÷èí. Îäíàêî, ê ýòîìó
óäèâèòåëüíîìó ñîâïàäåíèþ ìàññ èíåðòíîé è ãðàâèòàöèîííîé (ò.å.
òåõ ìàññ, êîòîðûå âõîäÿò â äâà çàêîíà ïðèðîäû - 2-îé çàêîí
ìåõàíèêè è çàêîí Âñåìèðíîãî òÿãîòåíèÿ) èíà÷å ïîäîøåë
Íüþòîí ÕÕ â. - Àëüáåðò Ýéíøòåéí. È åãî ïîäõîä ê ýòîìó ôàêòó
ïðèâåë ê ñîçäàíèþ íîâîé ôèçè÷åñêîé òåîðèè - îáùåé òåîðèè
îòíîñèòåëüíîñòè - ñîâðåìåííîé ðåëÿòèâèñòñêîé òåîðèè
ïðîñòðàíñòâà, âðåìåíè è òÿãîòåíèÿ.
Äîïîëíèì íàø î÷åðê íåêîòîðûìè âàæíûìè ñâåäåíèÿìè.
Îáðàòèì âíèìàíèå íà òî, ÷òî ñèëà òÿãîòåíèÿ íàïðàâëåíà ê öåíòðó
òÿãîòåíèÿ, ò.å. ïî îòíîøåíèþ ê íàïðàâëåíèþ ðàäèóñà-âåêòîðà,
ïðîâåäåííîìó îò öåíòðà òÿãîòåíèÿ ê ìåñòó ðàñïîëîæåíèÿ
ïðèòÿãèâàåìîãî òåëà, èìååò ïðîòèâîïîëîæíîå íàïðàâëåíèå. Ýòî
îçíà÷àåò, ÷òî ïðè âåêòîðíîé çàïèñè ñèëû ïðèòÿæåíèÿ íåîáõîäèìî
ïîñòàâèòü çíàê - â ïðàâîé ÷àñòè ðàâåíñòâà:
.
21
21
2
21
21
21
−
−
−
−
⋅
−=
R
R
R
mm
GF
r
r
(3.2)
Óñòàíîâëåííûé íàìè ôàêò èìååò
îáùåôèçè÷åñêîå çíà÷åíèå: âñÿêàÿ
ñèëà ïðèòÿæåíèÿ - îòðèöàòåëüíàÿ
âåëè÷èíà. Íî â øêîëüíîé ïðàêòèêå,
êàê ïðàâèëî, çíàê - ó âåëè÷èíû
ñèëû îïóñêàåòñÿ (åñëè ýòî, êîíå÷íî,
íå âëèÿåò íà ðåøåíèå çàäà÷è) è
ðàññìàòðèâàåòñÿ òîëüêî àáñîëþòíîå çíà÷åíèå ñèëû
âçàèìîäåéñòâèÿ òÿãîòåþùèõ òåë (èëè ýëåêòðè÷åñêèõ çàðÿäîâ).
 XVIII - XIX ââ. íüþòîíîâñêàÿ òåîðèÿ òÿãîòåíèÿ áûëà
ïðèçíàíà âñåìè ôèçèêàìè è íàøëà ïðàêòè÷åñêîå ïðèìåíåíèå.
Ïîñêîëüêó â ôîðìóëó çàêîíà òÿãîòåíèÿ íå âõîäèò âðåìÿ, òî ýòî
òîëêîâàëîñü êàê óòâåðæäåíèå, ÷òî ñèëà òÿãîòåíèÿ ïåðåäàåòñÿ íà
ëþáûå ðàññòîÿíèÿ ìãíîâåííî. Êàê è âñÿ êëàññè÷åñêàÿ ìåõàíèêà
(ìåõàíèêà, îñíîâàííàÿ íà çàêîíàõ Íüþòîíà), òåîðèÿ Íüþòîíà î
ñèëå òÿãîòåíèÿ - ýòî òåîðèÿ, îñíîâàííàÿ íà ïðèíöèïå
äàëüíîäåéñòâèÿ (ìãíîâåííîñòè ïåðåäà÷è äåéñòâèÿ èëè
èíôîðìàöèè íà ëþáîå ðàññòîÿíèå).
 òðóäàõ çíàìåíèòûõ ôèçèêîâ è ìàòåìàòèêîâ ýòîãî âðåìåíè
(Ýéëåð, Ëàãðàíæ, Ëàïëàñ è äð.) çàêîí Âñåìèðíîãî òÿãîòåíèÿ
óñïåøíî ïðèìåíÿëñÿ äëÿ îáúÿñíåíèÿ äâèæåíèÿ ïëàíåò è êîìåò
ñîëíå÷íîé ñèñòåìû. Ëàïëàñ ââîäèò åùå îäíó õàðàêòåðèñòèêó
ãðàâèòàöèîííîãî ïîëÿ, êîòîðàÿ ôîðìàëüíî íàïîìèíàåò
íàïðÿæåííîñòü ýëåêòðîñòàòè÷åñêîãî ïîëÿ. Äåéñòâèòåëüíî, åñëè
íàïðÿæåííîñòü ýëåêòðîñòàòè÷åñêîãî ïîëÿ îïðåäåëÿåòñÿ ïî
ôîðìóëå
q
F
E =
,
òî íàïðÿæåííîñòü ãðàâèòàöèîííîãî ïîëÿ â äàííîé òî÷êå
îïðåäåëÿåòñÿ àíàëîãè÷íî:
.
2
21
1
2
21
−
−
==
R
Gm
g
m
F
(3.3)
Íî ýòà âåëè÷èíà, êàê ëåãêî óñòàíîâèòü, ÿâëÿåòñÿ íå ÷åì èíûì,
êàê óñêîðåíèåì ñâîáîäíîãî ïàäåíèÿ. Òàêèì îáðàçîì, ó âåëè÷èíû
Ðèñ.1.
21−
F
r
21−
R
r
2
m
1
m
Èìåííî ïîýòîìó çàêîí òÿãîòåíèÿ ïîëó÷èë íàçâàíèå çàêîíà Óñòàíîâëåííûé íàìè ôàêò èìååò m2
Âñåìèðíîãî òÿãîòåíèÿ. ×òîáû íàïèñàòü çàêîí â âèäå ðàâåíñòâà, îáùåôèçè÷åñêîå çíà÷åíèå: âñÿêàÿ r
ââîäèòñÿ êîýôôèöèåíò ïðîïîðöèîíàëüíîñòè G - ãðàâèòàöèîííàÿ ñèëà ïðèòÿæåíèÿ - îòðèöàòåëüíàÿ F1− 2
ïîñòîÿííàÿ. Òîãäà âåëè÷èíà. Íî â øêîëüíîé ïðàêòèêå, r
R1− 2
m1 ⋅ m2 êàê ïðàâèëî, çíàê - ó âåëè÷èíû
Fòÿã = G Ðèñ.1. m1
. (3.1) ñèëû îïóñêàåòñÿ (åñëè ýòî, êîíå÷íî,
R12− 2
íå âëèÿåò íà ðåøåíèå çàäà÷è) è
Êîýôôèöèåíò G- ýòî íàèìåíîâàííàÿ âåëè÷èíà, ýòî ñâÿçàíî ðàññìàòðèâàåòñÿ òîëüêî àáñîëþòíîå çíà÷åíèå ñèëû
ñ òåì, ÷òî äëÿ âñåõ îñòàëüíûõ âåëè÷èí, âõîäÿùèõ â ôîðìóëó (3.1), âçàèìîäåéñòâèÿ òÿãîòåþùèõ òåë (èëè ýëåêòðè÷åñêèõ çàðÿäîâ).
óæå áûëè âûáðàíû åäèíèöû èçìåðåíèÿ, êîòîðûå âìåñòå íå äàþò Â XVIII - XIX ââ. íüþòîíîâñêàÿ òåîðèÿ òÿãîòåíèÿ áûëà
íàèìåíîâàíèå ñèëû, à â ôèçèêå ìîæíî ïðèðàâíèâàòü òîëüêî ïðèçíàíà âñåìè ôèçèêàìè è íàøëà ïðàêòè÷åñêîå ïðèìåíåíèå.
îäíîðîäíûå âåëè÷èíû (!). Ïðè ýòîì íåãëàñíî ñ÷èòàåòñÿ, ÷òî â Ïîñêîëüêó â ôîðìóëó çàêîíà òÿãîòåíèÿ íå âõîäèò âðåìÿ, òî ýòî
ôîðìóëå (3.1) ñòîèò òà æå ìàññà, êîòîðàÿ ôèãóðèðóåò â ôîðìóëå òîëêîâàëîñü êàê óòâåðæäåíèå, ÷òî ñèëà òÿãîòåíèÿ ïåðåäàåòñÿ íà
2-ãî çàêîíà ìåõàíèêè. Ýòîò ôàêò (ðàâåíñòâî ìàññ, âõîäÿùèõ â ëþáûå ðàññòîÿíèÿ ìãíîâåííî. Êàê è âñÿ êëàññè÷åñêàÿ ìåõàíèêà
ðàçíûå çàêîíû) â êëàññè÷åñêîé ôèçèêå ïðèíèìàëñÿ êàê äàííûé è (ìåõàíèêà, îñíîâàííàÿ íà çàêîíàõ Íüþòîíà), òåîðèÿ Íüþòîíà î
íå âûçûâàë îñîáîãî âîçðàæåíèÿ. Òåì áîëåå (î ÷åì ðå÷ü áóäåò èäòè ñèëå òÿãîòåíèÿ - ýòî òåîðèÿ, îñíîâàííàÿ íà ïðèíöèïå
äàëüøå) âî ìíîæåñòâå òî÷íåéøèõ îïûòîâ (ñ òî÷íîñòüþ äî 10-12) äàëüíîäåéñòâèÿ (ìãíîâåííîñòè ïåðåäà÷è äåéñòâèÿ èëè
èíôîðìàöèè íà ëþáîå ðàññòîÿíèå).
íå îáíàðóæèâàëîñü ðàçëè÷èå ýòèõ âåëè÷èí. Îäíàêî, ê ýòîìó
 òðóäàõ çíàìåíèòûõ ôèçèêîâ è ìàòåìàòèêîâ ýòîãî âðåìåíè
óäèâèòåëüíîìó ñîâïàäåíèþ ìàññ èíåðòíîé è ãðàâèòàöèîííîé (ò.å.
(Ýéëåð, Ëàãðàíæ, Ëàïëàñ è äð.) çàêîí Âñåìèðíîãî òÿãîòåíèÿ
òåõ ìàññ, êîòîðûå âõîäÿò â äâà çàêîíà ïðèðîäû - 2-îé çàêîí óñïåøíî ïðèìåíÿëñÿ äëÿ îáúÿñíåíèÿ äâèæåíèÿ ïëàíåò è êîìåò
ìåõàíèêè è çàêîí Âñåìèðíîãî òÿãîòåíèÿ) èíà÷å ïîäîøåë ñîëíå÷íîé ñèñòåìû. Ëàïëàñ ââîäèò åùå îäíó õàðàêòåðèñòèêó
Íüþòîí ÕÕ â. - Àëüáåðò Ýéíøòåéí. È åãî ïîäõîä ê ýòîìó ôàêòó ãðàâèòàöèîííîãî ïîëÿ, êîòîðàÿ ôîðìàëüíî íàïîìèíàåò
ïðèâåë ê ñîçäàíèþ íîâîé ôèçè÷åñêîé òåîðèè - îáùåé òåîðèè íàïðÿæåííîñòü ýëåêòðîñòàòè÷åñêîãî ïîëÿ. Äåéñòâèòåëüíî, åñëè
îòíîñèòåëüíîñòè - ñîâðåìåííîé ðåëÿòèâèñòñêîé òåîðèè íàïðÿæåííîñòü ýëåêòðîñòàòè÷åñêîãî ïîëÿ îïðåäåëÿåòñÿ ïî
ïðîñòðàíñòâà, âðåìåíè è òÿãîòåíèÿ. ôîðìóëå
Äîïîëíèì íàø î÷åðê íåêîòîðûìè âàæíûìè ñâåäåíèÿìè. F
Îáðàòèì âíèìàíèå íà òî, ÷òî ñèëà òÿãîòåíèÿ íàïðàâëåíà ê öåíòðó E=
q ,
òÿãîòåíèÿ, ò.å. ïî îòíîøåíèþ ê íàïðàâëåíèþ ðàäèóñà-âåêòîðà,
ïðîâåäåííîìó îò öåíòðà òÿãîòåíèÿ ê ìåñòó ðàñïîëîæåíèÿ òî íàïðÿæåííîñòü ãðàâèòàöèîííîãî ïîëÿ â äàííîé òî÷êå
îïðåäåëÿåòñÿ àíàëîãè÷íî:
ïðèòÿãèâàåìîãî òåëà, èìååò ïðîòèâîïîëîæíîå íàïðàâëåíèå. Ýòî
îçíà÷àåò, ÷òî ïðè âåêòîðíîé çàïèñè ñèëû ïðèòÿæåíèÿ íåîáõîäèìî F1− 2 Gm
= g = 2 1. (3.3)
ïîñòàâèòü çíàê - â ïðàâîé ÷àñòè ðàâåíñòâà: m2 R1− 2
r
r m1 ⋅ m2 R1− 2 Íî ýòà âåëè÷èíà, êàê ëåãêî óñòàíîâèòü, ÿâëÿåòñÿ íå ÷åì èíûì,
F1− 2 = −G 2 . (3.2) êàê óñêîðåíèåì ñâîáîäíîãî ïàäåíèÿ. Òàêèì îáðàçîì, ó âåëè÷èíû
R1− 2 R1− 2
168 169
Страницы
- « первая
- ‹ предыдущая
- …
- 84
- 85
- 86
- 87
- 88
- …
- следующая ›
- последняя »
