ВУЗ:
Составители:
Рубрика:
N a) pRIBLIVENNYE REENIQ. pUSTX m 2 POLOVIM X m um (t x) = gmi (t)i(x) i=0 GDE gmi DOLVNY BYTX PODOBRANY TAK, ^TOBY WYPOLNQLISX USLOWIQ: 8 u (t x) = 0 ESLI t < 0 x 2 < m0 : (um(t)jj ) + (grad um(t)jgrad j ) = (f (t)jj ) ESLI t > 0 um (0) = u0m (I ) GDE um ESTX LINEJNAQ KOMBINACIQ IZ 1 2 : : : m . 0 N.B. zDESX WWEDENY OBOZNA^ENIQ: um (t) = um (t x) u0m (t) = @um@t(t x) f (t) = f (t x): |TI USLOWIQ BUDUT WYPOLNQTXSQ, ESLI 8 g (t) = 0 < mj0 P m ESLI t < 0 : ggmj (t) + i=0 gmi (t)aij = fj (t) j = 0 1 : : : m mj (0) = gmj 0 GDE POLOVILI aij = (ijj )H () = (grad i jgrad j ) fj (t) = (f (t)jj ) gmi 1 0 0 = (u0m jj ): iZWESTNO, ^TO \TA SISTEMA OBLADAET ODNIM I TOLXKO ODNIM REENIEM W SMYSLE OBOB]ENNYH FUNKCIJ I ^TO gmj (t) 2 C (I ). dLQ DOKAZATELXST- WA \TOGO MOVNO ISPOLXZOWATX ILI METOD \LEMENTARNYH REENIJ, ILI METOD WARIACII POSTOQNNYH. b) aPRIORNAQ OCENKA. uMNOVAQ RAWENSTWO (I) NA gmj (t) I SUMMIRUQ PO j OT 0 DO m, POLU^AEM SOOTNOENIE \NERGII: (u0m (t)jum(t)) + kum(t)k2H () = (f (t)jum(t)): 1 0 wZQW WE]ESTWENNYE ^ASTI OT OBEIH ^ASTEJ RAWENSTWA I PROINTEGRI- ROWAW PO t NA 0 t], IMEEM: 1 (ku (t)k2 ; ku (0)k2) + Zt Zt 2 m m kum(s)kH 2 1 0 () ds = (f (s)jum(s))ds: 0 0 14
Страницы
- « первая
- ‹ предыдущая
- …
- 12
- 13
- 14
- 15
- 16
- …
- следующая ›
- последняя »