ВУЗ:
Составители:
Рубрика:
N
a) pRIBLIVENNYE REENIQ.
pUSTX m 2 POLOVIM
X
m
um (t x) = gmi (t)i(x)
i=0
GDE gmi DOLVNY BYTX PODOBRANY TAK, ^TOBY WYPOLNQLISX USLOWIQ:
8 u (t x) = 0 ESLI t < 0 x 2
< m0
: (um(t)jj ) + (grad um(t)jgrad j ) = (f (t)jj ) ESLI t > 0
um (0) = u0m
(I )
GDE um ESTX LINEJNAQ KOMBINACIQ IZ 1 2 : : : m .
0
N.B. zDESX WWEDENY OBOZNA^ENIQ:
um (t) = um (t x) u0m (t) = @um@t(t x) f (t) = f (t x):
|TI USLOWIQ BUDUT WYPOLNQTXSQ, ESLI
8 g (t) = 0
< mj0 P m
ESLI t < 0
: ggmj (t) + i=0 gmi (t)aij = fj (t) j = 0 1 : : : m
mj (0) = gmj
0
GDE POLOVILI
aij = (ijj )H () = (grad i jgrad j ) fj (t) = (f (t)jj ) gmi
1
0
0
= (u0m jj ):
iZWESTNO, ^TO \TA SISTEMA OBLADAET ODNIM I TOLXKO ODNIM REENIEM
W SMYSLE OBOB]ENNYH FUNKCIJ I ^TO gmj (t) 2 C (I ). dLQ DOKAZATELXST-
WA \TOGO MOVNO ISPOLXZOWATX ILI METOD \LEMENTARNYH REENIJ, ILI
METOD WARIACII POSTOQNNYH.
b) aPRIORNAQ OCENKA.
uMNOVAQ RAWENSTWO (I) NA gmj (t) I SUMMIRUQ PO j OT 0 DO m, POLU^AEM
SOOTNOENIE \NERGII:
(u0m (t)jum(t)) + kum(t)k2H () = (f (t)jum(t)):
1
0
wZQW WE]ESTWENNYE ^ASTI OT OBEIH ^ASTEJ RAWENSTWA I PROINTEGRI-
ROWAW PO t NA 0 t], IMEEM:
1 (ku (t)k2 ; ku (0)k2) +
Zt Zt
2 m m kum(s)kH 2
1
0 ()
ds = (f (s)jum(s))ds:
0 0
14
Страницы
- « первая
- ‹ предыдущая
- …
- 12
- 13
- 14
- 15
- 16
- …
- следующая ›
- последняя »
