Математическая логика и теория алгоритмов. Самохин А.В. - 137 стр.

UptoLike

Составители: 

Рубрика: 

§5. ðÏÌÎÏÔÁ ÉÓÞÉÓÌÅÎÉÑ ÐÒÅÄÉËÁÔÏ× 137
ðÏÓÌÅÄÎÉÍ ÛÁÇÏÍ × ÄÏËÁÚÁÔÅÌØÓÔ×Å ÔÅÏÒÅÍÙ Ï ÐÏÌÎÏÔÅ (×ÓÑËÏÅ ÎÅÐÒÏÔÉ-
×ÏÒÅÞÉ×ÏÅ ÍÎÏÖÅÓÔ×Ï ÚÁÍËÎÕÔÙÈ ÆÏÒÍÕÌ ÓÏ×ÍÅÓÔÎÏ) Ñ×ÌÑÅÔÓÑ ÔÁËÁÑ ÌÅÍÍÁ:
ìÅÍÍÁ 4. ðÕÓÔØ ¡ ÐÏÌÎÏÅ É ÜËÚÉÓÔÅÎÃÉÁÌØÎÏ ÐÏÌÎÏÅ ÍÎÏÖÅÓÔ×Ï ÚÁÍËÎÕ-
ÔÙÈ ÆÏÒÍÕÌ ÎÅËÏÔÏÒÏÊ ÓÉÇÎÁÔÕÒÙ σ. ôÏÇÄÁ ÓÕÝÅÓÔ×ÕÅÔ ÉÎÔÅÒÐÒÅÔÁÃÉÑ M
ÓÉÇÎÁÔÕÒÙ σ, × ËÏÔÏÒÏÊ ÉÓÔÉÎÎÙ ×ÓÅ ÆÏÒÍÕÌÙ ÉÚ •.
íÙ ÕÖÅ ÇÏ×ÏÒÉÌÉ, ËÁË ÎÁÄÏ ÓÔÒÏÉÔØ ÔÁËÕÀ ÉÎÔÅÒÐÒÅÔÁÃÉÀ. ðÏ×ÔÏÒÉÍ
ÜÔÏ ÂÏÌÅÅ ÐÏÄÒÏÂÎÏ. òÁÓÓÍÏÔÒÉÍ ×ÓÅ ÚÁÍËÎÕÔÙÅ ÔÅÒÍÙ ÓÉÇÎÁÔÕÒÙ σ, ÔÏ ÅÓÔØ
ÔÅÒÍÙ, ÎÅ ÓÏÄÅÒÖÁÝÉÅ ÐÅÒÅÍÅÎÎÙÈ, Á ÔÏÌØËÏ ÆÕÎËÃÉÏÎÁÌØÎÙÅ ÓÉÍ×ÏÌÙ É
ËÏÎÓÔÁÎÔÙ. (ôÁËÉÅ ÔÅÒÍÙ ÓÕÝÅÓÔ×ÕÀÔ, ÐÏÓËÏÌØËÕ ÔÅÏÒÉÑ ÜËÚÉÓÔÅÎÃÉÁÌØ-
ÎÏ ÐÏÌÎÁ.) üÔÏ ÍÎÏÖÅÓÔ×Ï ÂÕÄÅÔ ÎÏÓÉÔÅÌÅÍ ÉÎÔÅÒÐÒÅÔÁÃÉÉ.
ëÁË ÉÎÔÅÒÐÒÅÔÉÒÏ×ÁÔØ ÆÕÎËÃÉÏÎÁÌØÎÙÅ ÓÉÍ×ÏÌÙ, ÐÏÎÑÔÎÏ (ÜÔÏ ÎÅ ÚÁ-
×ÉÓÉÔ ÏÔ ÍÎÏÖÅÓÔ×Á •): ÅÓÌÉ ÓÉÍ×ÏÌ f ÉÍÅÅÔ ×ÁÌÅÎÔÎÏÓÔØ n, ÔÏ ÅÍÕ ÓÏ-
ÏÔ×ÅÔÓÔ×ÕÅÔ ÆÕÎËÃÉÑ, ËÏÔÏÒÁÑ ÏÔÏÂÒÁÖÁÅÔ n ÚÁÍËÎÕÔÙÈ ÔÅÒÍÏ× t
1
, . . . , t
n
× ÚÁÍËÎÕÔÙÊ ÔÅÒÍ f(t
1
, . . . , t
n
). ëÏÎÓÔÁÎÔÙ (ÆÕÎËÃÉÏÎÁÌØÎÙÅ ÓÉÍ×ÏÌÙ ×Á-
ÌÅÎÔÎÏÓÔÉ 0) ÉÎÔÅÒÐÒÅÔÉÒÕÀÔÓÑ ÓÁÍÉ ÓÏÂÏÊ.
éÎÔÅÒÐÒÅÔÁÃÉÑ ÐÒÅÄÉËÁÔÎÙÈ ÓÉÍ×ÏÌÏ× ÔÁËÏ×Á. ðÕÓÔØ A ¡ ÐÒÅÄÉËÁÔÎÙÊ
ÓÉÍ×ÏÌ ×ÁÌÅÎÔÎÏÓÔÉ n. þÔÏÂÙ ÕÚÎÁÔØ, ÉÓÔÉÎÅÎ ÌÉ ÓÏÏÔ×ÅÔÓÔ×ÕÀÝÉÊ ÅÍÕ
ÐÒÅÄÉËÁÔ ÎÁ ÚÁÍËÎÕÔÙÈ ÔÅÒÍÁÈ t
1
, . . . , t
n
, ÎÁÄÏ ÓÏÓÔÁ×ÉÔØ ÁÔÏÍÁÒÎÕÀ ÆÏÒ-
ÍÕÌÕ A(t
1
, . . . , t
n
) É ×ÙÑÓÎÉÔØ, ÞÔÏ ×Ù×ÏÄÉÔÓÑ ÉÚ • ¡ ÓÁÍÁ ÜÔÁ ÆÏÒÍÕÌÁ ÉÌÉ
ž ÏÔÒÉÃÁÎÉÅ. (úÄÅÓØ ÍÙ ÉÓÐÏÌØÚÕÅÍ ÐÏÌÎÏÔÕ.) ÷ ÐÅÒ×ÏÍ ÓÌÕÞÁÅ ÐÒÅÄÉËÁÔ
ÂÕÄÅÔ ÉÓÔÉÎÎÙÍ, ×Ï ×ÔÏÒÏÍ ¡ ÌÏÖÎÙÍ.
éÎÄÕËÃÉÅÊ ÐÏ ÞÉÓÌÕ ÌÏÇÉÞÅÓËÉÈ Ó×ÑÚÏË É Ë×ÁÎÔÏÒÏ× × ÚÁÍËÎÕÔÏÊ ÆÏÒÍÕ-
ÌÅ ϕ ÓÉÇÎÁÔÕÒÙ σ ÄÏËÁÖÅÍ ÔÁËÏÅ ÕÔ×ÅÒÖÄÅÎÉÅ:
` ϕ ϕ ÉÓÔÉÎÎÁ × M.
äÌÑ ÁÔÏÍÁÒÎÙÈ ÆÏÒÍÕÌ ÜÔÏ ×ÅÒÎÏ ÐÏ ÐÏÓÔÒÏÅÎÉÀ ÉÎÔÅÒÐÒÅÔÁÃÉÉ M.
äÌÑ ÐÒÏÐÏÚÉÃÉÏÎÁÌØÎÙÈ Ó×ÑÚÏË ÒÁÓÓÕÖÄÅÎÉÅ ÎÉÞÅÍ ÎÅ ÏÔÌÉÞÁÅÔÓÑ ÏÔ
ÐÒÉ×ÅľÎÎÏÇÏ × ÒÁÚÄÅÌÅ 2. îÁÍ ÎÕÖÎÏ ÐÒÏ×ÅÒÉÔØ, ÞÔÏ ×Ù×ÏÄÉÍÏÓÔØ ÉÚ
ÐÏÄÞÉÎÑÅÔÓÑ ÔÅÍ ÖÅ ÐÒÁ×ÉÌÁÍ, ÞÔÏ É ÉÓÔÉÎÎÏÓÔØ:
` ¬A 6` A,
` A B ` A É ` B,
` A B ` A ÉÌÉ ` B,
` A B 6` A ÉÌÉ ` B.
÷ÓÅ ÜÔÉ Ó×ÏÊÓÔ×Á ÎÅÓÌÏÖÎÏ ÄÏËÁÚÁÔØ. ðÅÒ×ÏÅ ÉÚ ÎÉÈ ×ÙÒÁÖÁÅÔ ÐÏÌÎÏÔÕ
ÎÅÐÒÏÔÉ×ÏÒÅÞÉ×ÏÓÔØ ¡ ÎÁÐÏÍÎÉÍ, ÞÔÏ ÐÏ ÏÐÒÅÄÅÌÅÎÉÀ ÐÏÌÎÁÑ ÔÅÏÒÉÑ ×ÓÅ-
ÇÄÁ ÎÅÐÒÏÔÉ×ÏÒÅÞÉ×Á) ÍÎÏÖÅÓÔ×Á •. ïÓÔÁÌØÎÙÅ Ó×ÏÊÓÔ×Á ÌÅÇËÏ ÐÒÏ×ÅÒÉÔØ,
ÅÓÌÉ ÉÍÅÔØ × ×ÉÄÕ, ÞÔÏ ×ÓÅ ÞÁÓÔÎÙÅ ÓÌÕÞÁÉ ÐÒÏÐÏÚÉÃÉÏÎÁÌØÎÙÈ ÔÁ×ÔÏÌÏÇÉÊ
×Ù×ÏÄÉÍÙ.
§5. ðÏÌÎÏÔÁ ÉÓÞÉÓÌÅÎÉÑ ÐÒÅÄÉËÁÔÏ×                                       137

   ðÏÓÌÅÄÎÉÍ ÛÁÇÏÍ × ÄÏËÁÚÁÔÅÌØÓÔ×Å ÔÅÏÒÅÍÙ Ï ÐÏÌÎÏÔÅ (×ÓÑËÏÅ ÎÅÐÒÏÔÉ-
×ÏÒÅÞÉ×ÏÅ ÍÎÏÖÅÓÔ×Ï ÚÁÍËÎÕÔÙÈ ÆÏÒÍÕÌ ÓÏ×ÍÅÓÔÎÏ) Ñ×ÌÑÅÔÓÑ ÔÁËÁÑ ÌÅÍÍÁ:
   ìÅÍÍÁ 4. ðÕÓÔØ • ¡ ÐÏÌÎÏÅ É ÜËÚÉÓÔÅÎÃÉÁÌØÎÏ ÐÏÌÎÏÅ ÍÎÏÖÅÓÔ×Ï ÚÁÍËÎÕ-
ÔÙÈ ÆÏÒÍÕÌ ÎÅËÏÔÏÒÏÊ ÓÉÇÎÁÔÕÒÙ σ. ôÏÇÄÁ ÓÕÝÅÓÔ×ÕÅÔ ÉÎÔÅÒÐÒÅÔÁÃÉÑ M
ÓÉÇÎÁÔÕÒÙ σ, × ËÏÔÏÒÏÊ ÉÓÔÉÎÎÙ ×ÓÅ ÆÏÒÍÕÌÙ ÉÚ •.
   íÙ ÕÖÅ ÇÏ×ÏÒÉÌÉ, ËÁË ÎÁÄÏ ÓÔÒÏÉÔØ ÔÁËÕÀ ÉÎÔÅÒÐÒÅÔÁÃÉÀ. ðÏ×ÔÏÒÉÍ
ÜÔÏ ÂÏÌÅÅ ÐÏÄÒÏÂÎÏ. òÁÓÓÍÏÔÒÉÍ ×ÓÅ ÚÁÍËÎÕÔÙÅ ÔÅÒÍÙ ÓÉÇÎÁÔÕÒÙ σ, ÔÏ ÅÓÔØ
ÔÅÒÍÙ, ÎÅ ÓÏÄÅÒÖÁÝÉÅ ÐÅÒÅÍÅÎÎÙÈ, Á ÔÏÌØËÏ ÆÕÎËÃÉÏÎÁÌØÎÙÅ ÓÉÍ×ÏÌÙ É
ËÏÎÓÔÁÎÔÙ. (ôÁËÉÅ ÔÅÒÍÙ ÓÕÝÅÓÔ×ÕÀÔ, ÐÏÓËÏÌØËÕ ÔÅÏÒÉÑ • ÜËÚÉÓÔÅÎÃÉÁÌØ-
ÎÏ ÐÏÌÎÁ.) üÔÏ ÍÎÏÖÅÓÔ×Ï ÂÕÄÅÔ ÎÏÓÉÔÅÌÅÍ ÉÎÔÅÒÐÒÅÔÁÃÉÉ.
   ëÁË ÉÎÔÅÒÐÒÅÔÉÒÏ×ÁÔØ ÆÕÎËÃÉÏÎÁÌØÎÙÅ ÓÉÍ×ÏÌÙ, ÐÏÎÑÔÎÏ (ÜÔÏ ÎÅ ÚÁ-
×ÉÓÉÔ ÏÔ ÍÎÏÖÅÓÔ×Á •): ÅÓÌÉ ÓÉÍ×ÏÌ f ÉÍÅÅÔ ×ÁÌÅÎÔÎÏÓÔØ n, ÔÏ ÅÍÕ ÓÏ-
ÏÔ×ÅÔÓÔ×ÕÅÔ ÆÕÎËÃÉÑ, ËÏÔÏÒÁÑ ÏÔÏÂÒÁÖÁÅÔ n ÚÁÍËÎÕÔÙÈ ÔÅÒÍÏ× t1 , . . . , tn
× ÚÁÍËÎÕÔÙÊ ÔÅÒÍ f (t1, . . . , tn ). ëÏÎÓÔÁÎÔÙ (ÆÕÎËÃÉÏÎÁÌØÎÙÅ ÓÉÍ×ÏÌÙ ×Á-
ÌÅÎÔÎÏÓÔÉ 0) ÉÎÔÅÒÐÒÅÔÉÒÕÀÔÓÑ ÓÁÍÉ ÓÏÂÏÊ.
   éÎÔÅÒÐÒÅÔÁÃÉÑ ÐÒÅÄÉËÁÔÎÙÈ ÓÉÍ×ÏÌÏ× ÔÁËÏ×Á. ðÕÓÔØ A ¡ ÐÒÅÄÉËÁÔÎÙÊ
ÓÉÍ×ÏÌ ×ÁÌÅÎÔÎÏÓÔÉ n. þÔÏÂÙ ÕÚÎÁÔØ, ÉÓÔÉÎÅÎ ÌÉ ÓÏÏÔ×ÅÔÓÔ×ÕÀÝÉÊ ÅÍÕ
ÐÒÅÄÉËÁÔ ÎÁ ÚÁÍËÎÕÔÙÈ ÔÅÒÍÁÈ t1 , . . . , tn , ÎÁÄÏ ÓÏÓÔÁ×ÉÔØ ÁÔÏÍÁÒÎÕÀ ÆÏÒ-
ÍÕÌÕ A(t1, . . . , tn) É ×ÙÑÓÎÉÔØ, ÞÔÏ ×Ù×ÏÄÉÔÓÑ ÉÚ • ¡ ÓÁÍÁ ÜÔÁ ÆÏÒÍÕÌÁ ÉÌÉ
ž ÏÔÒÉÃÁÎÉÅ. (úÄÅÓØ ÍÙ ÉÓÐÏÌØÚÕÅÍ ÐÏÌÎÏÔÕ.) ÷ ÐÅÒ×ÏÍ ÓÌÕÞÁÅ ÐÒÅÄÉËÁÔ
ÂÕÄÅÔ ÉÓÔÉÎÎÙÍ, ×Ï ×ÔÏÒÏÍ ¡ ÌÏÖÎÙÍ.
   éÎÄÕËÃÉÅÊ ÐÏ ÞÉÓÌÕ ÌÏÇÉÞÅÓËÉÈ Ó×ÑÚÏË É Ë×ÁÎÔÏÒÏ× × ÚÁÍËÎÕÔÏÊ ÆÏÒÍÕ-
ÌÅ ϕ ÓÉÇÎÁÔÕÒÙ σ ÄÏËÁÖÅÍ ÔÁËÏÅ ÕÔ×ÅÒÖÄÅÎÉÅ:
                         • ` ϕ ⇔ ϕ ÉÓÔÉÎÎÁ × M.
äÌÑ ÁÔÏÍÁÒÎÙÈ ÆÏÒÍÕÌ ÜÔÏ ×ÅÒÎÏ ÐÏ ÐÏÓÔÒÏÅÎÉÀ ÉÎÔÅÒÐÒÅÔÁÃÉÉ M.
  äÌÑ ÐÒÏÐÏÚÉÃÉÏÎÁÌØÎÙÈ Ó×ÑÚÏË ÒÁÓÓÕÖÄÅÎÉÅ ÎÉÞÅÍ ÎÅ ÏÔÌÉÞÁÅÔÓÑ ÏÔ
ÐÒÉ×ÅľÎÎÏÇÏ × ÒÁÚÄÅÌÅ 2. îÁÍ ÎÕÖÎÏ ÐÒÏ×ÅÒÉÔØ, ÞÔÏ ×Ù×ÏÄÉÍÏÓÔØ ÉÚ •
ÐÏÄÞÉÎÑÅÔÓÑ ÔÅÍ ÖÅ ÐÒÁ×ÉÌÁÍ, ÞÔÏ É ÉÓÔÉÎÎÏÓÔØ:
                         • ` ¬A ⇔ • 6` A,
                      • ` A ∧ B ⇔ • ` A É • ` B,
                      • ` A ∨ B ⇔ • ` A ÉÌÉ • ` B,
                     • ` A → B ⇔ • 6` A ÉÌÉ • ` B.
÷ÓÅ ÜÔÉ Ó×ÏÊÓÔ×Á ÎÅÓÌÏÖÎÏ ÄÏËÁÚÁÔØ. ðÅÒ×ÏÅ ÉÚ ÎÉÈ ×ÙÒÁÖÁÅÔ ÐÏÌÎÏÔÕ (É
ÎÅÐÒÏÔÉ×ÏÒÅÞÉ×ÏÓÔØ ¡ ÎÁÐÏÍÎÉÍ, ÞÔÏ ÐÏ ÏÐÒÅÄÅÌÅÎÉÀ ÐÏÌÎÁÑ ÔÅÏÒÉÑ ×ÓÅ-
ÇÄÁ ÎÅÐÒÏÔÉ×ÏÒÅÞÉ×Á) ÍÎÏÖÅÓÔ×Á •. ïÓÔÁÌØÎÙÅ Ó×ÏÊÓÔ×Á ÌÅÇËÏ ÐÒÏ×ÅÒÉÔØ,
ÅÓÌÉ ÉÍÅÔØ × ×ÉÄÕ, ÞÔÏ ×ÓÅ ÞÁÓÔÎÙÅ ÓÌÕÞÁÉ ÐÒÏÐÏÚÉÃÉÏÎÁÌØÎÙÈ ÔÁ×ÔÏÌÏÇÉÊ
×Ù×ÏÄÉÍÙ.