Математическая логика и теория алгоритмов. Самохин А.В. - 15 стр.

UptoLike

Составители: 

Рубрика: 

§4. óÞ¾ÔÎÙÅ ÍÎÏÖÅÓÔ×Á 15
ôÅÐÅÒØ ÜÔÕ ÔÁÂÌÉÃÕ ÍÏÖÎÏ ÒÁÚ×ÅÒÎÕÔØ × ÐÏÓÌÅÄÏ×ÁÔÅÌØÎÏÓÔØ, ÎÁÐÒÉÍÅÒ,
ÐÒÏÈÏÄÑ ÐÏ ÏÞÅÒÅÄÉ ÄÉÁÇÏÎÁÌÉ:
a
00
, a
01
, a
10
, a
02
, a
11
, a
20
, a
03
, a
12
, a
21
, a
30
, . . .
åÓÌÉ ÍÎÏÖÅÓÔ×Á A
i
ÎÅ ÐÅÒÅÓÅËÁÌÉÓØ, ÔÏ ÍÙ ÐÏÌÕÞÉÌÉ ÉÓËÏÍÏÅ ÐÒÅÄÓÔÁ×ÌÅÎÉÅ
ÄÌÑ ÉÈ ÏÂßÅÄÉÎÅÎÉÑ. åÓÌÉ ÐÅÒÅÓÅËÁÌÉÓØ, ÔÏ ÉÚ ÐÏÓÔÒÏÅÎÎÏÊ ÐÏÓÌÅÄÏ×ÁÔÅÌØ-
ÎÏÓÔÉ ÎÁÄÏ ×ÙÂÒÏÓÉÔØ ÐÏ×ÔÏÒÅÎÉÑ.
åÓÌÉ ÍÎÏÖÅÓÔ× ËÏÎÅÞÎÏÅ ÞÉÓÌÏ ÉÌÉ ËÁËÉÅ-ÔÏ ÉÚ ÍÎÏÖÅÓÔ× ËÏÎÅÞÎÙ, ÔÏ ×
ÜÔÏÊ ËÏÎÓÔÒÕËÃÉÉ ÞÁÓÔÉ ÞÌÅÎÏ× ÎÅ ÂÕÄÅÔ ¡ É ÏÓÔÁÎÅÔÓÑ ÌÉÂÏ ËÏÎÅÞÎÏÅ, ÌÉÂÏ
ÓÞ¾ÔÎÏÅ ÍÎÏÖÅÓÔ×Ï.
úÁÄÁÞÁ 27. ïÐÉÓÁÎÎÙÊ ÐÒÏÈÏÄ ÐÏ ÄÉÁÇÏÎÁÌÑÍ ÚÁÄÁ¾Ô ×ÚÁÉÍÎÏ ÏÄÎÏ-
ÚÎÁÞÎÏÅ ÓÏÏÔ×ÅÔÓÔ×ÉÅ ÍÅÖÄÕ ÍÎÏÖÅÓÔ×ÏÍ ×ÓÅÈ ÐÁÒ ÎÁÔÕÒÁÌØÎÙÈ ÞÉÓÅÌ
(ËÏÔÏÒÏÅ ÏÂÏÚÎÁÞÁÅÔÓÑ N × N) É N. ìÀÂÏÐÙÔÎÏ, ÞÔÏ ÜÔÏ ÓÏÏÔ×ÅÔÓÔ×ÉÅ
ÚÁÄÁ¾ÔÓÑ ÐÒÏÓÔÏÊ ÆÏÒÍÕÌÏÊ (ÍÎÏÇÏÞÌÅÎÏÍ ×ÔÏÒÏÊ ÓÔÅÐÅÎÉ Ó ÒÁÃÉÏÎÁÌØ-
ÎÙÍÉ ËÏÜÆÆÉÃÉÅÎÔÁÍÉ). õËÁÖÉÔÅ ÜÔÏÔ ÍÎÏÇÏÞÌÅÎ.
úÁÍÅÞÁÎÉÅ. ÷ ÄÏËÁÚÁÔÅÌØÓÔ×Å ÕÔ×ÅÒÖÄÅÎÉÑ (Â) ÔÅÏÒÅÍÙ 2 ÅÓÔØ ÔÏÎËÉÊ ÍÏ-
ÍÅÎÔ: ÎÁ ËÁÖÄÏÍ ÛÁÇÅ ÍÙ ÄÏÌÖÎÙ ×ÙÂÒÁÔØ ÏÄÉÎ ÉÚ ÏÓÔÁ×ÛÉÈÓÑ ÜÌÅÍÅÎÔÏ×
ÍÎÏÖÅÓÔ×Á A; ÔÁËÉÅ ÜÌÅÍÅÎÔÙ ÅÓÔØ, ÎÏ Õ ÎÁÓ ÎÅÔ ÎÉËÁËÏÇÏ ÐÒÁ×ÉÌÁ, ÐÏÚ×Ï-
ÌÑÀÝÅÇÏ ÔÁËÏÊ ×ÙÂÏÒ ÏÐÉÓÁÔØ. ðÒÉ ÂÏÌÅÅ ÆÏÒÍÁÌØÎÏÍ ÐÏÓÔÒÏÅÎÉÉ ÔÅÏÒÉÉ
ÍÎÏÖÅÓÔ× ÔÕÔ ÎÕÖÎÏ ÓÏÓÌÁÔØÓÑ ÎÁ ÓÐÅÃÉÁÌØÎÕÀ ÁËÓÉÏÍÕ, ÎÁÚÙ×ÁÅÍÕÀ ÁË-
ÓÉÏÍÏÊ ×ÙÂÏÒÁ. úÁËÏÎÎÏÓÔØ ÜÔÏÊ ÁËÓÉÏÍÙ ×ÙÚÙ×ÁÌÁ ÂÏÌØÛÉÅ ÓÐÏÒÙ × ÎÁ-
ÞÁÌÅ 20-ÇÏ ×ÅËÁ, ÎÏ ÐÏÓÔÅÐÅÎÎÏ Ë ÎÅÊ ÐÒÉ×ÙËÌÉ, É ÜÔÉ ÓÐÏÒÙ ÓÅÊÞÁÓ ÐÏÞÔÉ
ÎÅ ×ÏÓÐÒÉÎÉÍÁÀÔÓÑ. ÷ ÓÅÒÅÄÉÎÅ ×ÅËÁ ×ÅÌÉËÉÊ ÌÏÇÉË ëÕÒÔ ç¾ÄÅÌØ ÄÏËÁÚÁÌ,
ÞÔÏ ÁËÓÉÏÍÕ ×ÙÂÏÒÁ ÎÅÌØÚÑ ÏÐÒÏ×ÅÒÇÎÕÔØ, ÐÏÌØÚÕÑÓØ ÏÓÔÁÌØÎÙÍÉ ÁËÓÉÏÍÁÍÉ
ÔÅÏÒÉÉ ÍÎÏÖÅÓÔ×, Á × 1960-Å ÇÏÄÙ ÁÍÅÒÉËÁÎÓËÉÊ ÍÁÔÅÍÁÔÉË ðÏÌ äÖ. ëÏÜÎ
ÄÏËÁÚÁÌ, ÞÔÏ Å¾ ÎÅÌØÚÑ É ×Ù×ÅÓÔÉ ÉÚ ÏÓÔÁÌØÎÙÈ ÁËÓÉÏÍ. (ëÏÎÅÞÎÏ, ÐÏÎÉÍÁ-
ÎÉÅ ÜÔÉÈ ÕÔ×ÅÒÖÄÅÎÉÊ ÔÒÅÂÕÅÔ ÐÏÄÒÏÂÎÏÇÏ ÉÚÌÏÖÅÎÉÑ ÔÅÏÒÉÉ ÍÎÏÖÅÓÔ× ËÁË
ÁËÓÉÏÍÁÔÉÞÅÓËÏÊ ÔÅÏÒÉÉ.)
åݾ ÎÅÓËÏÌØËÏ ÐÒÉÍÅÒÏ× ÓÞ¾ÔÎÙÈ ÍÎÏÖÅÓÔ×:
íÎÏÖÅÓÔ×Ï Q ÒÁÃÉÏÎÁÌØÎÙÈ ÞÉÓÅÌ ÓÞ¾ÔÎÏ. ÷ ÓÁÍÏÍ ÄÅÌÅ, ÒÁÃÉÏÎÁÌØ-
ÎÙÅ ÞÉÓÌÁ ÐÒÅÄÓÔÁ×ÌÑÀÔÓÑ ÎÅÓÏËÒÁÔÉÍÙÍÉ ÄÒÏÂÑÍÉ Ó ÃÅÌÙÍ ÞÉÓÌÉÔÅ-
ÌÅÍ É ÚÎÁÍÅÎÁÔÅÌÅÍ. íÎÏÖÅÓÔ×Ï ÄÒÏÂÅÊ Ó ÄÁÎÎÙÍ ÚÎÁÍÅÎÁÔÅÌÅÍ ÓÞ¾Ô-
ÎÏ, ÐÏÜÔÏÍÕ Q ÐÒÅÄÓÔÁ×ÉÍÏ × ×ÉÄÅ ÏÂßÅÄÉÎÅÎÉÑ ÓÞ¾ÔÎÏÇÏ ÞÉÓÌÁ ÓÞ¾Ô-
ÎÙÈ ÍÎÏÖÅÓÔ×. úÁÂÅÇÁÑ ×ÐÅÒ¾Ä (ÓÍ. ÒÁÚÄÅÌ 6), ÏÔÍÅÔÉÍ, ÞÔÏ ÍÎÏÖÅÓÔ×Ï
R ×ÓÅÈ ÄÅÊÓÔ×ÉÔÅÌØÎÙÈ ÞÉÓÅÌ ÎÅÓÞ¾ÔÎÏ.
íÎÏÖÅÓÔ×Ï N
k
, ÜÌÅÍÅÎÔÁÍÉ ËÏÔÏÒÏÇÏ Ñ×ÌÑÀÔÓÑ ÎÁÂÏÒÙ ÉÚ k ÎÁÔÕÒÁÌØ-
ÎÙÈ ÞÉÓÅÌ, ÓÞ¾ÔÎÏ. üÔÏ ÌÅÇËÏ ÄÏËÁÚÁÔØ ÉÎÄÕËÃÉÅÊ ÐÏ k. ðÒÉ k = 2
ÍÎÏÖÅÓÔ×Ï N
2
= N×N ÐÁÒ ÎÁÔÕÒÁÌØÎÙÈ ÞÉÓÅÌ ÒÁÚÂÉ×ÁÅÔÓÑ ÎÁ ÓÞ¾ÔÎÏÅ
§4. óÞ¾ÔÎÙÅ ÍÎÏÖÅÓÔ×Á                                                        15

ôÅÐÅÒØ ÜÔÕ ÔÁÂÌÉÃÕ ÍÏÖÎÏ ÒÁÚ×ÅÒÎÕÔØ × ÐÏÓÌÅÄÏ×ÁÔÅÌØÎÏÓÔØ, ÎÁÐÒÉÍÅÒ,
ÐÒÏÈÏÄÑ ÐÏ ÏÞÅÒÅÄÉ ÄÉÁÇÏÎÁÌÉ:
               a00 , a01 , a10, a02 , a11, a20, a03 , a12, a21, a30, . . .
åÓÌÉ ÍÎÏÖÅÓÔ×Á Ai ÎÅ ÐÅÒÅÓÅËÁÌÉÓØ, ÔÏ ÍÙ ÐÏÌÕÞÉÌÉ ÉÓËÏÍÏÅ ÐÒÅÄÓÔÁ×ÌÅÎÉÅ
ÄÌÑ ÉÈ ÏÂßÅÄÉÎÅÎÉÑ. åÓÌÉ ÐÅÒÅÓÅËÁÌÉÓØ, ÔÏ ÉÚ ÐÏÓÔÒÏÅÎÎÏÊ ÐÏÓÌÅÄÏ×ÁÔÅÌØ-
ÎÏÓÔÉ ÎÁÄÏ ×ÙÂÒÏÓÉÔØ ÐÏ×ÔÏÒÅÎÉÑ.
   åÓÌÉ ÍÎÏÖÅÓÔ× ËÏÎÅÞÎÏÅ ÞÉÓÌÏ ÉÌÉ ËÁËÉÅ-ÔÏ ÉÚ ÍÎÏÖÅÓÔ× ËÏÎÅÞÎÙ, ÔÏ ×
ÜÔÏÊ ËÏÎÓÔÒÕËÃÉÉ ÞÁÓÔÉ ÞÌÅÎÏ× ÎÅ ÂÕÄÅÔ ¡ É ÏÓÔÁÎÅÔÓÑ ÌÉÂÏ ËÏÎÅÞÎÏÅ, ÌÉÂÏ
ÓÞ¾ÔÎÏÅ ÍÎÏÖÅÓÔ×Ï.
   úÁÄÁÞÁ 27. ïÐÉÓÁÎÎÙÊ ÐÒÏÈÏÄ ÐÏ ÄÉÁÇÏÎÁÌÑÍ ÚÁÄÁ¾Ô ×ÚÁÉÍÎÏ ÏÄÎÏ-
ÚÎÁÞÎÏÅ ÓÏÏÔ×ÅÔÓÔ×ÉÅ ÍÅÖÄÕ ÍÎÏÖÅÓÔ×ÏÍ ×ÓÅÈ ÐÁÒ ÎÁÔÕÒÁÌØÎÙÈ ÞÉÓÅÌ
(ËÏÔÏÒÏÅ ÏÂÏÚÎÁÞÁÅÔÓÑ N × N) É N. ìÀÂÏÐÙÔÎÏ, ÞÔÏ ÜÔÏ ÓÏÏÔ×ÅÔÓÔ×ÉÅ
ÚÁÄÁ¾ÔÓÑ ÐÒÏÓÔÏÊ ÆÏÒÍÕÌÏÊ (ÍÎÏÇÏÞÌÅÎÏÍ ×ÔÏÒÏÊ ÓÔÅÐÅÎÉ Ó ÒÁÃÉÏÎÁÌØ-
ÎÙÍÉ ËÏÜÆÆÉÃÉÅÎÔÁÍÉ). õËÁÖÉÔÅ ÜÔÏÔ ÍÎÏÇÏÞÌÅÎ.
   úÁÍÅÞÁÎÉÅ. ÷ ÄÏËÁÚÁÔÅÌØÓÔ×Å ÕÔ×ÅÒÖÄÅÎÉÑ (Â) ÔÅÏÒÅÍÙ 2 ÅÓÔØ ÔÏÎËÉÊ ÍÏ-
ÍÅÎÔ: ÎÁ ËÁÖÄÏÍ ÛÁÇÅ ÍÙ ÄÏÌÖÎÙ ×ÙÂÒÁÔØ ÏÄÉÎ ÉÚ ÏÓÔÁ×ÛÉÈÓÑ ÜÌÅÍÅÎÔÏ×
ÍÎÏÖÅÓÔ×Á A; ÔÁËÉÅ ÜÌÅÍÅÎÔÙ ÅÓÔØ, ÎÏ Õ ÎÁÓ ÎÅÔ ÎÉËÁËÏÇÏ ÐÒÁ×ÉÌÁ, ÐÏÚ×Ï-
ÌÑÀÝÅÇÏ ÔÁËÏÊ ×ÙÂÏÒ ÏÐÉÓÁÔØ. ðÒÉ ÂÏÌÅÅ ÆÏÒÍÁÌØÎÏÍ ÐÏÓÔÒÏÅÎÉÉ ÔÅÏÒÉÉ
ÍÎÏÖÅÓÔ× ÔÕÔ ÎÕÖÎÏ ÓÏÓÌÁÔØÓÑ ÎÁ ÓÐÅÃÉÁÌØÎÕÀ ÁËÓÉÏÍÕ, ÎÁÚÙ×ÁÅÍÕÀ ÁË-
ÓÉÏÍÏÊ ×ÙÂÏÒÁ. úÁËÏÎÎÏÓÔØ ÜÔÏÊ ÁËÓÉÏÍÙ ×ÙÚÙ×ÁÌÁ ÂÏÌØÛÉÅ ÓÐÏÒÙ × ÎÁ-
ÞÁÌÅ 20-ÇÏ ×ÅËÁ, ÎÏ ÐÏÓÔÅÐÅÎÎÏ Ë ÎÅÊ ÐÒÉ×ÙËÌÉ, É ÜÔÉ ÓÐÏÒÙ ÓÅÊÞÁÓ ÐÏÞÔÉ
ÎÅ ×ÏÓÐÒÉÎÉÍÁÀÔÓÑ. ÷ ÓÅÒÅÄÉÎÅ ×ÅËÁ ×ÅÌÉËÉÊ ÌÏÇÉË ëÕÒÔ ç¾ÄÅÌØ ÄÏËÁÚÁÌ,
ÞÔÏ ÁËÓÉÏÍÕ ×ÙÂÏÒÁ ÎÅÌØÚÑ ÏÐÒÏ×ÅÒÇÎÕÔØ, ÐÏÌØÚÕÑÓØ ÏÓÔÁÌØÎÙÍÉ ÁËÓÉÏÍÁÍÉ
ÔÅÏÒÉÉ ÍÎÏÖÅÓÔ×, Á × 1960-Å ÇÏÄÙ ÁÍÅÒÉËÁÎÓËÉÊ ÍÁÔÅÍÁÔÉË ðÏÌ äÖ. ëÏÜÎ
ÄÏËÁÚÁÌ, ÞÔÏ Å¾ ÎÅÌØÚÑ É ×Ù×ÅÓÔÉ ÉÚ ÏÓÔÁÌØÎÙÈ ÁËÓÉÏÍ. (ëÏÎÅÞÎÏ, ÐÏÎÉÍÁ-
ÎÉÅ ÜÔÉÈ ÕÔ×ÅÒÖÄÅÎÉÊ ÔÒÅÂÕÅÔ ÐÏÄÒÏÂÎÏÇÏ ÉÚÌÏÖÅÎÉÑ ÔÅÏÒÉÉ ÍÎÏÖÅÓÔ× ËÁË
ÁËÓÉÏÍÁÔÉÞÅÓËÏÊ ÔÅÏÒÉÉ.)
  åݾ ÎÅÓËÏÌØËÏ ÐÒÉÍÅÒÏ× ÓÞ¾ÔÎÙÈ ÍÎÏÖÅÓÔ×:
   • íÎÏÖÅÓÔ×Ï Q ÒÁÃÉÏÎÁÌØÎÙÈ ÞÉÓÅÌ ÓÞ¾ÔÎÏ. ÷ ÓÁÍÏÍ ÄÅÌÅ, ÒÁÃÉÏÎÁÌØ-
     ÎÙÅ ÞÉÓÌÁ ÐÒÅÄÓÔÁ×ÌÑÀÔÓÑ ÎÅÓÏËÒÁÔÉÍÙÍÉ ÄÒÏÂÑÍÉ Ó ÃÅÌÙÍ ÞÉÓÌÉÔÅ-
     ÌÅÍ É ÚÎÁÍÅÎÁÔÅÌÅÍ. íÎÏÖÅÓÔ×Ï ÄÒÏÂÅÊ Ó ÄÁÎÎÙÍ ÚÎÁÍÅÎÁÔÅÌÅÍ ÓÞ¾Ô-
     ÎÏ, ÐÏÜÔÏÍÕ Q ÐÒÅÄÓÔÁ×ÉÍÏ × ×ÉÄÅ ÏÂßÅÄÉÎÅÎÉÑ ÓÞ¾ÔÎÏÇÏ ÞÉÓÌÁ ÓÞ¾Ô-
     ÎÙÈ ÍÎÏÖÅÓÔ×. úÁÂÅÇÁÑ ×ÐÅÒ¾Ä (ÓÍ. ÒÁÚÄÅÌ 6), ÏÔÍÅÔÉÍ, ÞÔÏ ÍÎÏÖÅÓÔ×Ï
     R ×ÓÅÈ ÄÅÊÓÔ×ÉÔÅÌØÎÙÈ ÞÉÓÅÌ ÎÅÓÞ¾ÔÎÏ.
   • íÎÏÖÅÓÔ×Ï Nk , ÜÌÅÍÅÎÔÁÍÉ ËÏÔÏÒÏÇÏ Ñ×ÌÑÀÔÓÑ ÎÁÂÏÒÙ ÉÚ k ÎÁÔÕÒÁÌØ-
     ÎÙÈ ÞÉÓÅÌ, ÓÞ¾ÔÎÏ. üÔÏ ÌÅÇËÏ ÄÏËÁÚÁÔØ ÉÎÄÕËÃÉÅÊ ÐÏ k. ðÒÉ k = 2
     ÍÎÏÖÅÓÔ×Ï N2 = N × N ÐÁÒ ÎÁÔÕÒÁÌØÎÙÈ ÞÉÓÅÌ ÒÁÚÂÉ×ÁÅÔÓÑ ÎÁ ÓÞ¾ÔÎÏÅ