Математическая логика и теория алгоритмов. Самохин А.В. - 165 стр.

UptoLike

Составители: 

Рубрика: 

§4. íÎÏÖÅÓÔ×Á ÎÏÍÅÒÏ× 165
ðÕÓÔØ K ¡ ÐÒÏÉÚ×ÏÌØÎÏÅ ÐÅÒÅÞÉÓÌÉÍÏÅ ÎÅÒÁÚÒÅÛÉÍÏÅ ÍÎÏÖÅÓÔ×Ï. òÁÓ-
ÓÍÏÔÒÉÍ ÔÁËÕÀ ×ÙÞÉÓÌÉÍÕÀ ÆÕÎËÃÉÀ V Ä×ÕÈ ÁÒÇÕÍÅÎÔÏ×:
V (n, x) =
0, ÅÓÌÉ n K,
ÎÅ ÏÐÒÅÄÅÌÅÎÏ, ÅÓÌÉ n / K.
ëÁË ×ÉÄÎÏ, ×ÔÏÒÏÊ ÁÒÇÕÍÅÎÔ ÜÔÏÊ ÆÕÎËÃÉÉ ÆÉËÔÉ×ÅÎ, É ÏÎÁ ÐÏ ÓÕÝÅÓÔ×Õ
ÓÏ×ÐÁÄÁÅÔ Ó ÐÏÌÕÈÁÒÁËÔÅÒÉÓÔÉÞÅÓËÏÊ ÆÕÎËÃÉÅÊ ÍÎÏÖÅÓÔ×Á K ÏÔ ÐÅÒ×ÏÇÏ
ÁÒÇÕÍÅÎÔÁ. ïÞÅ×ÉÄÎÏ, ÜÔÁ ÆÕÎËÃÉÑ ÉÍÅÅÔ ÓÅÞÅÎÉÑ Ä×ÕÈ ÔÉÐÏ×: ÐÒÉ n K
ÓÅÞÅÎÉÅ V
n
Ñ×ÌÑÅÔÓÑ ÎÕÌÅ×ÏÊ ÆÕÎËÃÉÅÊ, ÐÒÉ n / K ¡ ÎÉÇÄÅ ÎÅ ÏÐÒÅÄÅ̾ÎÎÏÊ
ÆÕÎËÃÉÅÊ.
ôÁË ËÁË ÆÕÎËÃÉÑ U Ñ×ÌÑÅÔÓÑ ÇÌÁ×ÎÏÊ, ÓÕÝÅÓÔ×ÕÅÔ ×ÙÞÉÓÌÉÍÁÑ ×ÓÀÄÕ
ÏÐÒÅÄÅ̾ÎÎÁÑ ÆÕÎËÃÉÑ s, ÄÌÑ ËÏÔÏÒÏÊ V (n, x) = U(s(n), x) ÐÒÉ ×ÓÅÈ n É x,
Ô. Å. V
n
= U
s(n)
. ðÏÜÔÏÍÕ ÐÒÉ n K ÚÎÁÞÅÎÉÅ s(n) Ñ×ÌÑÅÔÓÑ UÏÍÅÒÏÍ
ÎÕÌÅ×ÏÊ ÆÕÎËÃÉÉ, Á ÐÒÉ n / K ÚÎÁÞÅÎÉÅ s(n) Ñ×ÌÑÅÔÓÑ UÏÍÅÒÏÍ ÎÉÇÄÅ
ÎÅ ÏÐÒÅÄÅ̾ÎÎÏÊ ÆÕÎËÃÉÉ. ðÏÜÔÏÍÕ ÅÓÌÉ ÂÙ ÍÎÏÖÅÓÔ×Ï U-ÎÏÍÅÒÏ× ÎÉÇÄÅ ÎÅ
ÏÐÒÅÄÅ̾ÎÎÏÊ ÆÕÎËÃÉÉ ÒÁÚÒÅÛÁÌÏÓØ ÂÙ ÎÅËÏÔÏÒÙÍ ÁÌÇÏÒÉÔÍÏÍ, ÔÏ ÍÙ ÂÙ
ÍÏÇÌÉ ÐÒÉÍÅÎÉÔØ ÜÔÏÔ ÁÌÇÏÒÉÔÍ Ë s(n) É ÕÚÎÁÔØ, ÐÒÉÎÁÄÌÅÖÉÔ ÌÉ ÞÉÓÌÏ n
ÍÎÏÖÅÓÔ×Õ K ÉÌÉ ÎÅÔ. ôÁËÉÍ ÏÂÒÁÚÏÍ, ÍÎÏÖÅÓÔ×Ï K ÂÙÌÏ ÂÙ ÒÁÚÒÅÛÉÍÙÍ
× ÐÒÏÔÉ×ÏÒÅÞÉÉ Ó ÎÁÛÉÍ ÐÒÅÄÐÏÌÏÖÅÎÉÅÍ.
÷ ÞÁÓÔÎÏÓÔÉ, ÍÙ ÍÏÖÅÍ ÚÁËÌÀÞÉÔØ, ÞÔÏ ÎÉÇÄÅ ÎÅ ÏÐÒÅÄÅ̾ÎÎÁÑ ÆÕÎËÃÉÑ
ÉÍÅÅÔ ÂÅÓËÏÎÅÞÎÏ ÍÎÏÇÏ ÎÏÍÅÒÏ× × ÌÀÂÏÊ ÇÌÁ×ÎÏÊ ÎÕÍÅÒÁÃÉÉ ÏÓËÏÌØËÕ
ÌÀÂÏÅ ËÏÎÅÞÎÏÅ ÍÎÏÖÅÓÔ×Ï ÒÁÚÒÅÛÉÍÏ).
ëÒÏÍÅ ÔÏÇÏ, ÍÏÖÎÏ ÚÁÍÅÔÉÔØ, ÞÔÏ ÍÎÏÖÅÓÔ×Ï ÎÏÍÅÒÏ× ÎÉÇÄÅ ÎÅ ÏÐÒÅÄÅ̾Î-
ÎÏÊ ÆÕÎËÃÉÉ ÎÅ ÔÏÌØËÏ ÎÅ ÒÁÚÒÅÛÉÍÏ, ÎÏ É ÎÅ ÐÅÒÅÞÉÓÌÉÍÏ. ÷ ÓÁÍÏÍ ÄÅÌÅ,
ÅÇÏ ÄÏÐÏÌÎÅÎÉÅ ¡ ÍÎÏÖÅÓÔ×Ï ×ÓÅÈ ÎÏÍÅÒÏ× ×ÓÅÈ ÆÕÎËÃÉÊ Ó ÎÅÐÕÓÔÏÊ ÏÂÌÁ-
ÓÔØÀ ÏÐÒÅÄÅÌÅÎÉÑ ¡ ÐÅÒÅÞÉÓÌÉÍÏ. (üÔÏ ×ÅÒÎÏ ÄÌÑ ÌÀÂÏÊ ×ÙÞÉÓÌÉÍÏÊ ÎÕ-
ÍÅÒÁÃÉÉ, Á ÎÅ ÔÏÌØËÏ ÄÌÑ ÇÌÁ×ÎÏÊ: ÐÁÒÁÌÌÅÌØÎÏ ×ÙÞÉÓÌÑÑ U(n, x) ÄÌÑ ×ÓÅÈ n
É x, ÍÙ ÍÏÖÅÍ ÐÅÞÁÔÁÔØ ÔÅ n, ÄÌÑ ËÏÔÏÒÙÈ ÏÂÎÁÒÕÖÉÌÏÓØ x, ÐÒÉ ËÏÔÏÒÏÍ
U(n, x) ÏÐÒÅÄÅÌÅÎÏ.) á ÅÓÌÉ ÄÏÐÏÌÎÅÎÉÅ ÎÅÒÁÚÒÅÛÉÍÏÇÏ ÍÎÏÖÅÓÔ×Á ÐÅÒÅÞÉ-
ÓÌÉÍÏ, ÔÏ ÓÁÍÏ ÍÎÏÖÅÓÔ×Ï ÎÅÐÅÒÅÞÉÓÌÉÍÏ (ÐÏ ÔÅÏÒÅÍÅ ðÏÓÔÁ, Ó. 149).
óÐÒÁ×ÅÄÌÉ×Ï É ÂÏÌÅÅ ÏÂÝÅÅ ÕÔ×ÅÒÖÄÅÎÉÅ, ÎÁÚÙ×ÁÅÍÏÅ ÉÎÏÇÄÁ ÔÅÏÒÅÍÏÊ
õÓÐÅÎÓËÏÇÏ òÁÊÓÁ. ïÂÏÚÎÁÞÉÍ ËÌÁÓÓ ×ÓÅÈ ×ÙÞÉÓÌÉÍÙÈ ÆÕÎËÃÉÊ ÄÎÏÇÏ ÁÒ-
ÇÕÍÅÎÔÁ) ÞÅÒÅÚ F.
ôÅÏÒÅÍÁ 64. ðÕÓÔØ A F ¡ ÐÒÏÉÚ×ÏÌØÎÏÅ ÎÅÔÒÉ×ÉÁÌØÎÏÅ Ó×ÏÊÓÔ×Ï
×ÙÞÉÓÌÉÍÙÈ ÆÕÎËÃÉÊ (ÎÅÔÒÉ×ÉÁÌØÎÏÓÔØ ÏÚÎÁÞÁÅÔ, ÞÔÏ ÅÓÔØ ËÁË ÆÕÎË-
ÃÉÉ, ÅÍÕ ÕÄÏ×ÌÅÔ×ÏÒÑÀÝÉÅ, ÔÁË É ÆÕÎËÃÉÉ, ÅÍÕ ÎÅ ÕÄÏ×ÌÅÔ×ÏÒÑÀÝÉÅ, ÔÏ
ÅÓÔØ ÞÔÏ ÍÎÏÖÅÓÔ×Ï A ÎÅÐÕÓÔÏ É ÎÅ ÓÏ×ÐÁÄÁÅÔ ÓÏ ×ÓÅÍ F). ðÕÓÔØ U ¡
ÇÌÁ×ÎÁÑ ÕÎÉ×ÅÒÓÁÌØÎÁÑ ÆÕÎËÃÉÑ. ôÏÇÄÁ ÎÅ ÓÕÝÅÓÔ×ÕÅÔ ÁÌÇÏÒÉÔÍÁ, ËÏÔÏ-
§4. íÎÏÖÅÓÔ×Á ÎÏÍÅÒÏ×                                                165

  ðÕÓÔØ K ¡ ÐÒÏÉÚ×ÏÌØÎÏÅ ÐÅÒÅÞÉÓÌÉÍÏÅ ÎÅÒÁÚÒÅÛÉÍÏÅ ÍÎÏÖÅÓÔ×Ï. òÁÓ-
ÓÍÏÔÒÉÍ ÔÁËÕÀ ×ÙÞÉÓÌÉÍÕÀ ÆÕÎËÃÉÀ V Ä×ÕÈ ÁÒÇÕÍÅÎÔÏ×:
                           
                             0, ÅÓÌÉ n ∈ K,
                V (n, x) =
                             ÎÅ ÏÐÒÅÄÅÌÅÎÏ, ÅÓÌÉ n ∈
                                                   / K.
ëÁË ×ÉÄÎÏ, ×ÔÏÒÏÊ ÁÒÇÕÍÅÎÔ ÜÔÏÊ ÆÕÎËÃÉÉ ÆÉËÔÉ×ÅÎ, É ÏÎÁ ÐÏ ÓÕÝÅÓÔ×Õ
ÓÏ×ÐÁÄÁÅÔ Ó ÐÏÌÕÈÁÒÁËÔÅÒÉÓÔÉÞÅÓËÏÊ ÆÕÎËÃÉÅÊ ÍÎÏÖÅÓÔ×Á K ÏÔ ÐÅÒ×ÏÇÏ
ÁÒÇÕÍÅÎÔÁ. ïÞÅ×ÉÄÎÏ, ÜÔÁ ÆÕÎËÃÉÑ ÉÍÅÅÔ ÓÅÞÅÎÉÑ Ä×ÕÈ ÔÉÐÏ×: ÐÒÉ n ∈ K
ÓÅÞÅÎÉÅ Vn Ñ×ÌÑÅÔÓÑ ÎÕÌÅ×ÏÊ ÆÕÎËÃÉÅÊ, ÐÒÉ n ∈
                                            / K ¡ ÎÉÇÄÅ ÎÅ ÏÐÒÅÄÅ̾ÎÎÏÊ
ÆÕÎËÃÉÅÊ.
    ôÁË ËÁË ÆÕÎËÃÉÑ U Ñ×ÌÑÅÔÓÑ ÇÌÁ×ÎÏÊ, ÓÕÝÅÓÔ×ÕÅÔ ×ÙÞÉÓÌÉÍÁÑ ×ÓÀÄÕ
ÏÐÒÅÄÅ̾ÎÎÁÑ ÆÕÎËÃÉÑ s, ÄÌÑ ËÏÔÏÒÏÊ V (n, x) = U(s(n), x) ÐÒÉ ×ÓÅÈ n É x,
Ô. Å. Vn = Us(n) . ðÏÜÔÏÍÕ ÐÒÉ n ∈ K ÚÎÁÞÅÎÉÅ s(n) Ñ×ÌÑÅÔÓÑ U-ÎÏÍÅÒÏÍ
ÎÕÌÅ×ÏÊ ÆÕÎËÃÉÉ, Á ÐÒÉ n ∈  / K ÚÎÁÞÅÎÉÅ s(n) Ñ×ÌÑÅÔÓÑ U-ÎÏÍÅÒÏÍ ÎÉÇÄÅ
ÎÅ ÏÐÒÅÄÅ̾ÎÎÏÊ ÆÕÎËÃÉÉ. ðÏÜÔÏÍÕ ÅÓÌÉ ÂÙ ÍÎÏÖÅÓÔ×Ï U-ÎÏÍÅÒÏ× ÎÉÇÄÅ ÎÅ
ÏÐÒÅÄÅ̾ÎÎÏÊ ÆÕÎËÃÉÉ ÒÁÚÒÅÛÁÌÏÓØ ÂÙ ÎÅËÏÔÏÒÙÍ ÁÌÇÏÒÉÔÍÏÍ, ÔÏ ÍÙ ÂÙ
ÍÏÇÌÉ ÐÒÉÍÅÎÉÔØ ÜÔÏÔ ÁÌÇÏÒÉÔÍ Ë s(n) É ÕÚÎÁÔØ, ÐÒÉÎÁÄÌÅÖÉÔ ÌÉ ÞÉÓÌÏ n
ÍÎÏÖÅÓÔ×Õ K ÉÌÉ ÎÅÔ. ôÁËÉÍ ÏÂÒÁÚÏÍ, ÍÎÏÖÅÓÔ×Ï K ÂÙÌÏ ÂÙ ÒÁÚÒÅÛÉÍÙÍ
× ÐÒÏÔÉ×ÏÒÅÞÉÉ Ó ÎÁÛÉÍ ÐÒÅÄÐÏÌÏÖÅÎÉÅÍ.

   ÷ ÞÁÓÔÎÏÓÔÉ, ÍÙ ÍÏÖÅÍ ÚÁËÌÀÞÉÔØ, ÞÔÏ ÎÉÇÄÅ ÎÅ ÏÐÒÅÄÅ̾ÎÎÁÑ ÆÕÎËÃÉÑ
ÉÍÅÅÔ ÂÅÓËÏÎÅÞÎÏ ÍÎÏÇÏ ÎÏÍÅÒÏ× × ÌÀÂÏÊ ÇÌÁ×ÎÏÊ ÎÕÍÅÒÁÃÉÉ (ÐÏÓËÏÌØËÕ
ÌÀÂÏÅ ËÏÎÅÞÎÏÅ ÍÎÏÖÅÓÔ×Ï ÒÁÚÒÅÛÉÍÏ).
   ëÒÏÍÅ ÔÏÇÏ, ÍÏÖÎÏ ÚÁÍÅÔÉÔØ, ÞÔÏ ÍÎÏÖÅÓÔ×Ï ÎÏÍÅÒÏ× ÎÉÇÄÅ ÎÅ ÏÐÒÅÄÅ̾Î-
ÎÏÊ ÆÕÎËÃÉÉ ÎÅ ÔÏÌØËÏ ÎÅ ÒÁÚÒÅÛÉÍÏ, ÎÏ É ÎÅ ÐÅÒÅÞÉÓÌÉÍÏ. ÷ ÓÁÍÏÍ ÄÅÌÅ,
ÅÇÏ ÄÏÐÏÌÎÅÎÉÅ ¡ ÍÎÏÖÅÓÔ×Ï ×ÓÅÈ ÎÏÍÅÒÏ× ×ÓÅÈ ÆÕÎËÃÉÊ Ó ÎÅÐÕÓÔÏÊ ÏÂÌÁ-
ÓÔØÀ ÏÐÒÅÄÅÌÅÎÉÑ ¡ ÐÅÒÅÞÉÓÌÉÍÏ. (üÔÏ ×ÅÒÎÏ ÄÌÑ ÌÀÂÏÊ ×ÙÞÉÓÌÉÍÏÊ ÎÕ-
ÍÅÒÁÃÉÉ, Á ÎÅ ÔÏÌØËÏ ÄÌÑ ÇÌÁ×ÎÏÊ: ÐÁÒÁÌÌÅÌØÎÏ ×ÙÞÉÓÌÑÑ U(n, x) ÄÌÑ ×ÓÅÈ n
É x, ÍÙ ÍÏÖÅÍ ÐÅÞÁÔÁÔØ ÔÅ n, ÄÌÑ ËÏÔÏÒÙÈ ÏÂÎÁÒÕÖÉÌÏÓØ x, ÐÒÉ ËÏÔÏÒÏÍ
U(n, x) ÏÐÒÅÄÅÌÅÎÏ.) á ÅÓÌÉ ÄÏÐÏÌÎÅÎÉÅ ÎÅÒÁÚÒÅÛÉÍÏÇÏ ÍÎÏÖÅÓÔ×Á ÐÅÒÅÞÉ-
ÓÌÉÍÏ, ÔÏ ÓÁÍÏ ÍÎÏÖÅÓÔ×Ï ÎÅÐÅÒÅÞÉÓÌÉÍÏ (ÐÏ ÔÅÏÒÅÍÅ ðÏÓÔÁ, Ó. 149).
   óÐÒÁ×ÅÄÌÉ×Ï É ÂÏÌÅÅ ÏÂÝÅÅ ÕÔ×ÅÒÖÄÅÎÉÅ, ÎÁÚÙ×ÁÅÍÏÅ ÉÎÏÇÄÁ ÔÅÏÒÅÍÏÊ
õÓÐÅÎÓËÏÇÏ òÁÊÓÁ. ïÂÏÚÎÁÞÉÍ ËÌÁÓÓ ×ÓÅÈ ×ÙÞÉÓÌÉÍÙÈ ÆÕÎËÃÉÊ (ÏÄÎÏÇÏ ÁÒ-
ÇÕÍÅÎÔÁ) ÞÅÒÅÚ F .

   ôÅÏÒÅÍÁ 64. ðÕÓÔØ A ⊂ F ¡ ÐÒÏÉÚ×ÏÌØÎÏÅ ÎÅÔÒÉ×ÉÁÌØÎÏÅ Ó×ÏÊÓÔ×Ï
×ÙÞÉÓÌÉÍÙÈ ÆÕÎËÃÉÊ (ÎÅÔÒÉ×ÉÁÌØÎÏÓÔØ ÏÚÎÁÞÁÅÔ, ÞÔÏ ÅÓÔØ ËÁË ÆÕÎË-
ÃÉÉ, ÅÍÕ ÕÄÏ×ÌÅÔ×ÏÒÑÀÝÉÅ, ÔÁË É ÆÕÎËÃÉÉ, ÅÍÕ ÎÅ ÕÄÏ×ÌÅÔ×ÏÒÑÀÝÉÅ, ÔÏ
ÅÓÔØ ÞÔÏ ÍÎÏÖÅÓÔ×Ï A ÎÅÐÕÓÔÏ É ÎÅ ÓÏ×ÐÁÄÁÅÔ ÓÏ ×ÓÅÍ F). ðÕÓÔØ U ¡
ÇÌÁ×ÎÁÑ ÕÎÉ×ÅÒÓÁÌØÎÁÑ ÆÕÎËÃÉÑ. ôÏÇÄÁ ÎÅ ÓÕÝÅÓÔ×ÕÅÔ ÁÌÇÏÒÉÔÍÁ, ËÏÔÏ-