Математическая логика и теория алгоритмов. Самохин А.В. - 164 стр.

UptoLike

Составители: 

Рубрика: 

164 çÌÁ×Á IX. îÕÍÅÒÁÃÉÉ É ÏÐÅÒÁÃÉÉ
äÏËÁÚÁÔÅÌØÓÔ×Ï. òÁÓÓÍÏÔÒÉÍ ÍÎÏÖÅÓÔ×Ï V N × N, ÏÐÒÅÄÅ̾ÎÎÏÅ ÔÁË:
h[m, n], xi V x (W
m
W
n
)
(ÚÄÅÓØ Ë×ÁÄÒÁÔÎÙÅ ÓËÏÂËÉ ÏÂÏÚÎÁÞÁÀÔ ÎÏÍÅÒ ÐÁÒÙ) É ÐÒÉÍÅÎÉÍ Ë ÎÅÍÕ ÏÐÒÅ-
ÄÅÌÅÎÉÅ ÇÌÁ×ÎÏÇÏ ÕÎÉ×ÅÒÓÁÌØÎÏÇÏ ÍÎÏÖÅÓÔ×Á.
ëÁË É ÄÌÑ ÆÕÎËÃÉÊ, ÐÏÎÑÔÉÅ ×ÙÞÉÓÌÉÍÏÓÔÉ ÐÏÓÌÅÄÏ×ÁÔÅÌØÎÏÓÔÉ ÐÅÒÅ-
ÞÉÓÌÉÍÙÈ ÍÎÏÖÅÓÔ× ÍÏÖÅÔ ÂÙÔØ ÏÐÒÅÄÅÌÅÎÏ Ä×ÏÑËÏ: ÍÏÖÎÏ ÓÞÉÔÁÔØ ×ÙÞÉ-
ÓÌÉÍÏÊ ÐÏÓÌÅÄÏ×ÁÔÅÌØÎÏÓÔØ V
0
, V
1
, . . . ÓÅÞÅÎÉÊ ÐÒÏÉÚ×ÏÌØÎÏÇÏ ÐÅÒÅÞÉÓÌÉÍÏÇÏ
ÍÎÏÖÅÓÔ×Á V , Á ÍÏÖÎÏ ÔÒÅÂÏ×ÁÔØ, ÞÔÏÂÙ ÐÏ i ÍÏÖÎÏ ÂÙÌÏ ÁÌÇÏÒÉÔÍÉÞÅÓËÉ
ÕËÁÚÁÔØ ÏÄÉÎ ÉÚ ÎÏÍÅÒÏ× iÏ ÞÌÅÎÁ ÐÏÓÌÅÄÏ×ÁÔÅÌØÎÏÓÔÉ × ÇÌÁ×ÎÏÊ ÎÕÍÅÒÁ-
ÃÉÉ. üÔÉ ÏÐÒÅÄÅÌÅÎÉÑ ÒÁ×ÎÏÓÉÌØÎÙ (ÄÏËÁÚÁÔÅÌØÓÔ×Ï ÐÏÌÎÏÓÔØÀ ÁÎÁÌÏÇÉÞÎÏ
ÒÁÓÓÕÖÄÅÎÉÀ ÄÌÑ ÆÕÎËÃÉÊ).
§4. íÎÏÖÅÓÔ×Á ÎÏÍÅÒÏ×
îÁÞÎ¾Í Ó ÔÁËÏÇÏ ÐÒÉÍÅÒÁ. òÁÓÓÍÏÔÒÉÍ ÍÎÏÖÅÓÔ×Ï ÎÏÍÅÒÏ× ÎÉÇÄÅ ÎÅ ÏÐÒÅ-
ÄÅ̾ÎÎÏÊ ÆÕÎËÃÉÉ ÄÌÑ ËÁËÏÊ-ÌÉÂÏ ÇÌÁ×ÎÏÊ ÎÕÍÅÒÁÃÉÉ. âÕÄÅÔ ÌÉ ÏÎÏ ÒÁÚÒÅ-
ÛÉÍÏ? äÒÕÇÉÍÉ ÓÌÏ×ÁÍÉ, ÍÏÖÎÏ ÌÉ ÐÏ ÎÏÍÅÒÕ ÆÕÎËÃÉÉ × ÇÌÁ×ÎÏÊ ÎÕÍÅÒÁ-
ÃÉÉ ÏÐÒÅÄÅÌÉÔØ, Ñ×ÌÑÅÔÓÑ ÌÉ ÜÔÁ ÆÕÎËÃÉÑ ÎÉÇÄÅ ÎÅ ÏÐÒÅÄÅ̾ÎÎÏÊ?
ðÒÅÖÄÅ ÞÅÍ ÏÔ×ÅÞÁÔØ ÎÁ ÜÔÏÔ ×ÏÐÒÏÓ, ÚÁÍÅÔÉÍ, ÞÔÏ ÏÔ×ÅÔ ÎÅ ÚÁ×ÉÓÉÔ ÏÔ
ÔÏÇÏ, ËÁËÁÑ ÇÌÁ×ÎÁÑ ÎÕÍÅÒÁÃÉÑ ×ÙÂÒÁÎÁ. ÷ ÓÁÍÏÍ ÄÅÌÅ, ÅÓÌÉ ÅÓÔØ Ä×Å ÒÁÚÎÙÅ
ÇÌÁ×ÎÙÅ ÎÕÍÅÒÁÃÉÉ, ÔÏ ÏÎÉ, ËÁË ÇÏ×ÏÒÑÔ, ¥Ó×ÏÄÑÔÓÑ¥ ÄÒÕÇ Ë ÄÒÕÇÕ: ÐÏ ÎÏÍÅÒÕ
ÆÕÎËÃÉÉ × ÏÄÎÏÊ ÎÕÍÅÒÁÃÉÉ ÍÏÖÎÏ ÁÌÇÏÒÉÔÍÉÞÅÓËÉ ÐÏÌÕÞÉÔØ ÎÏÍÅÒ ÔÏÊ
ÖÅ ÆÕÎËÃÉÉ × ÄÒÕÇÏÊ ÎÕÍÅÒÁÃÉÉ. åÓÌÉ ÂÙ × ÏÄÎÏÊ ÎÕÍÅÒÁÃÉÉ ÍÏÖÎÏ ÂÙÌÏ
ÂÙ ÐÒÏ×ÅÒÑÔØ ¥ÎÉÇÄÅ-ÎÅ-ÏÐÒÅÄÅ̾ÎÎÏÓÔØ¥ ÆÕÎËÃÉÉ, ÔÏ ÜÔÏ ÍÏÖÎÏ ÂÙÌÏ ÂÙ
ÄÅÌÁÔØ É × ÄÒÕÇÏÊ (ÐÒÉÍÅÎÉ× ¥ÆÕÎËÃÉÉ ÐÅÒÅÈÏÄÁ¥).
óÌÅÄÕÀÝÁÑ ÔÅÏÒÅÍÁ ÐÏËÁÚÙ×ÁÅÔ, ÞÔÏ ÏÔ×ÅÔ ÎÁ ÉÓÈÏÄÎÙÊ ×ÏÐÒÏÓ ÂÕÄÅÔ
ÏÔÒÉÃÁÔÅÌØÎÙÍ.
ôÅÏÒÅÍÁ 63. ðÕÓÔØ U ¡ ÐÒÏÉÚ×ÏÌØÎÁÑ ÇÌÁ×ÎÁÑ ÕÎÉ×ÅÒÓÁÌØÎÁÑ ÆÕÎË-
ÃÉÑ. ôÏÇÄÁ ÍÎÏÖÅÓÔ×Ï ÔÅÈ n, ÐÒÉ ËÏÔÏÒÙÈ ÆÕÎËÃÉÑ U
n
Ñ×ÌÑÅÔÓÑ ÎÉÇÄÅ ÎÅ
ÏÐÒÅÄÅ̾ÎÎÏÊ, ÎÅÒÁÚÒÅÛÉÍÏ.
äÏËÁÚÁÔÅÌØÓÔ×Ï. éÓÐÏÌØÚÕÅÍ ÍÅÔÏÄ, ÎÁÚÙ×ÁÅÍÙÊ ¥Ó×ÅÄÅÎÉÅÍ¥ ¡ ÐÏËÁ-
ÖÅÍ, ÞÔÏ ÅÓÌÉ ÂÙ ÜÔÏ ÍÎÏÖÅÓÔ×Ï ÂÙÌÏ ÒÁÚÒÅÛÉÍÙÍ, ÔÏ É ×ÏÏÂÝÅ ÌÀÂÏÅ
ÐÅÒÅÞÉÓÌÉÍÏÅ ÍÎÏÖÅÓÔ×Ï ÂÙÌÏ ÂÙ ÒÁÚÒÅÛÉÍÙÍ. (þÔÏ, ËÁË ÍÙ ÚÎÁÅÍ, ÎÅ×ÅÒ-
ÎÏ.)
164                                     çÌÁ×Á IX. îÕÍÅÒÁÃÉÉ É ÏÐÅÒÁÃÉÉ

  äÏËÁÚÁÔÅÌØÓÔ×Ï. òÁÓÓÍÏÔÒÉÍ ÍÎÏÖÅÓÔ×Ï V ⊂ N × N, ÏÐÒÅÄÅ̾ÎÎÏÅ ÔÁË:

                     h[m, n], xi ∈ V ⇔ x ∈ (Wm ∩ Wn)

(ÚÄÅÓØ Ë×ÁÄÒÁÔÎÙÅ ÓËÏÂËÉ ÏÂÏÚÎÁÞÁÀÔ ÎÏÍÅÒ ÐÁÒÙ) É ÐÒÉÍÅÎÉÍ Ë ÎÅÍÕ ÏÐÒÅ-
ÄÅÌÅÎÉÅ ÇÌÁ×ÎÏÇÏ ÕÎÉ×ÅÒÓÁÌØÎÏÇÏ ÍÎÏÖÅÓÔ×Á.

  ëÁË É ÄÌÑ ÆÕÎËÃÉÊ, ÐÏÎÑÔÉÅ ×ÙÞÉÓÌÉÍÏÓÔÉ ÐÏÓÌÅÄÏ×ÁÔÅÌØÎÏÓÔÉ ÐÅÒÅ-
ÞÉÓÌÉÍÙÈ ÍÎÏÖÅÓÔ× ÍÏÖÅÔ ÂÙÔØ ÏÐÒÅÄÅÌÅÎÏ Ä×ÏÑËÏ: ÍÏÖÎÏ ÓÞÉÔÁÔØ ×ÙÞÉ-
ÓÌÉÍÏÊ ÐÏÓÌÅÄÏ×ÁÔÅÌØÎÏÓÔØ V0 , V1, . . . ÓÅÞÅÎÉÊ ÐÒÏÉÚ×ÏÌØÎÏÇÏ ÐÅÒÅÞÉÓÌÉÍÏÇÏ
ÍÎÏÖÅÓÔ×Á V , Á ÍÏÖÎÏ ÔÒÅÂÏ×ÁÔØ, ÞÔÏÂÙ ÐÏ i ÍÏÖÎÏ ÂÙÌÏ ÁÌÇÏÒÉÔÍÉÞÅÓËÉ
ÕËÁÚÁÔØ ÏÄÉÎ ÉÚ ÎÏÍÅÒÏ× i-ÇÏ ÞÌÅÎÁ ÐÏÓÌÅÄÏ×ÁÔÅÌØÎÏÓÔÉ × ÇÌÁ×ÎÏÊ ÎÕÍÅÒÁ-
ÃÉÉ. üÔÉ ÏÐÒÅÄÅÌÅÎÉÑ ÒÁ×ÎÏÓÉÌØÎÙ (ÄÏËÁÚÁÔÅÌØÓÔ×Ï ÐÏÌÎÏÓÔØÀ ÁÎÁÌÏÇÉÞÎÏ
ÒÁÓÓÕÖÄÅÎÉÀ ÄÌÑ ÆÕÎËÃÉÊ).


  §4. íÎÏÖÅÓÔ×Á ÎÏÍÅÒÏ×

   îÁÞÎ¾Í Ó ÔÁËÏÇÏ ÐÒÉÍÅÒÁ. òÁÓÓÍÏÔÒÉÍ ÍÎÏÖÅÓÔ×Ï ÎÏÍÅÒÏ× ÎÉÇÄÅ ÎÅ ÏÐÒÅ-
ÄÅ̾ÎÎÏÊ ÆÕÎËÃÉÉ ÄÌÑ ËÁËÏÊ-ÌÉÂÏ ÇÌÁ×ÎÏÊ ÎÕÍÅÒÁÃÉÉ. âÕÄÅÔ ÌÉ ÏÎÏ ÒÁÚÒÅ-
ÛÉÍÏ? äÒÕÇÉÍÉ ÓÌÏ×ÁÍÉ, ÍÏÖÎÏ ÌÉ ÐÏ ÎÏÍÅÒÕ ÆÕÎËÃÉÉ × ÇÌÁ×ÎÏÊ ÎÕÍÅÒÁ-
ÃÉÉ ÏÐÒÅÄÅÌÉÔØ, Ñ×ÌÑÅÔÓÑ ÌÉ ÜÔÁ ÆÕÎËÃÉÑ ÎÉÇÄÅ ÎÅ ÏÐÒÅÄÅ̾ÎÎÏÊ?
   ðÒÅÖÄÅ ÞÅÍ ÏÔ×ÅÞÁÔØ ÎÁ ÜÔÏÔ ×ÏÐÒÏÓ, ÚÁÍÅÔÉÍ, ÞÔÏ ÏÔ×ÅÔ ÎÅ ÚÁ×ÉÓÉÔ ÏÔ
ÔÏÇÏ, ËÁËÁÑ ÇÌÁ×ÎÁÑ ÎÕÍÅÒÁÃÉÑ ×ÙÂÒÁÎÁ. ÷ ÓÁÍÏÍ ÄÅÌÅ, ÅÓÌÉ ÅÓÔØ Ä×Å ÒÁÚÎÙÅ
ÇÌÁ×ÎÙÅ ÎÕÍÅÒÁÃÉÉ, ÔÏ ÏÎÉ, ËÁË ÇÏ×ÏÒÑÔ, ¥Ó×ÏÄÑÔÓÑ¥ ÄÒÕÇ Ë ÄÒÕÇÕ: ÐÏ ÎÏÍÅÒÕ
ÆÕÎËÃÉÉ × ÏÄÎÏÊ ÎÕÍÅÒÁÃÉÉ ÍÏÖÎÏ ÁÌÇÏÒÉÔÍÉÞÅÓËÉ ÐÏÌÕÞÉÔØ ÎÏÍÅÒ ÔÏÊ
ÖÅ ÆÕÎËÃÉÉ × ÄÒÕÇÏÊ ÎÕÍÅÒÁÃÉÉ. åÓÌÉ ÂÙ × ÏÄÎÏÊ ÎÕÍÅÒÁÃÉÉ ÍÏÖÎÏ ÂÙÌÏ
ÂÙ ÐÒÏ×ÅÒÑÔØ ¥ÎÉÇÄÅ-ÎÅ-ÏÐÒÅÄÅ̾ÎÎÏÓÔØ¥ ÆÕÎËÃÉÉ, ÔÏ ÜÔÏ ÍÏÖÎÏ ÂÙÌÏ ÂÙ
ÄÅÌÁÔØ É × ÄÒÕÇÏÊ (ÐÒÉÍÅÎÉ× ¥ÆÕÎËÃÉÉ ÐÅÒÅÈÏÄÁ¥).
   óÌÅÄÕÀÝÁÑ ÔÅÏÒÅÍÁ ÐÏËÁÚÙ×ÁÅÔ, ÞÔÏ ÏÔ×ÅÔ ÎÁ ÉÓÈÏÄÎÙÊ ×ÏÐÒÏÓ ÂÕÄÅÔ
ÏÔÒÉÃÁÔÅÌØÎÙÍ.

  ôÅÏÒÅÍÁ 63. ðÕÓÔØ U ¡ ÐÒÏÉÚ×ÏÌØÎÁÑ ÇÌÁ×ÎÁÑ ÕÎÉ×ÅÒÓÁÌØÎÁÑ ÆÕÎË-
ÃÉÑ. ôÏÇÄÁ ÍÎÏÖÅÓÔ×Ï ÔÅÈ n, ÐÒÉ ËÏÔÏÒÙÈ ÆÕÎËÃÉÑ Un Ñ×ÌÑÅÔÓÑ ÎÉÇÄÅ ÎÅ
ÏÐÒÅÄÅ̾ÎÎÏÊ, ÎÅÒÁÚÒÅÛÉÍÏ.

   äÏËÁÚÁÔÅÌØÓÔ×Ï. éÓÐÏÌØÚÕÅÍ ÍÅÔÏÄ, ÎÁÚÙ×ÁÅÍÙÊ ¥Ó×ÅÄ‚ÅÎÉÅÍ¥ ¡ ÐÏËÁ-
ÖÅÍ, ÞÔÏ ÅÓÌÉ ÂÙ ÜÔÏ ÍÎÏÖÅÓÔ×Ï ÂÙÌÏ ÒÁÚÒÅÛÉÍÙÍ, ÔÏ É ×ÏÏÂÝÅ ÌÀÂÏÅ
ÐÅÒÅÞÉÓÌÉÍÏÅ ÍÎÏÖÅÓÔ×Ï ÂÙÌÏ ÂÙ ÒÁÚÒÅÛÉÍÙÍ. (þÔÏ, ËÁË ÍÙ ÚÎÁÅÍ, ÎÅ×ÅÒ-
ÎÏ.)