Математическая логика и теория алгоритмов. Самохин А.В. - 41 стр.

UptoLike

Составители: 

Рубрика: 

§1. üË×É×ÁÌÅÎÔÎÏÓÔØ É ÐÏÒÑÄÏË 41
úÁÄÁÞÁ 72. (ôÅÏÒÅÍÁ òÁÍÓÅÑ) íÎÏÖÅÓÔ×Ï ×ÓÅÈ k-ÜÌÅÍÅÎÔÎÙÈ ÐÏÄÍÎÏ-
ÖÅÓÔ× ÂÅÓËÏÎÅÞÎÏÇÏ ÍÎÏÖÅÓÔ×Á A ÒÁÚÂÉÔÏ ÎÁ l ËÌÁÓÓÏ× (k, l ¡ ÎÁÔÕÒÁÌØ-
ÎÙÅ ÞÉÓÌÁ). äÏËÁÖÉÔÅ, ÞÔÏ ÎÁÊľÔÓÑ ÂÅÓËÏÎÅÞÎÏÅ ÍÎÏÖÅÓÔ×Ï B A, ×ÓÅ
k-ÜÌÅÍÅÎÔÎÙÅ ÐÏÄÍÎÏÖÅÓÔ×Á ËÏÔÏÒÏÇÏ ÐÒÉÎÁÄÌÅÖÁÔ ÏÄÎÏÍÕ ËÌÁÓÓÕ.
(ðÒÉ k = 1 ÜÔÏ ÏÞÅ×ÉÄÎÏ: ÅÓÌÉ ÂÅÓËÏÎÅÞÎÏÅ ÍÎÏÖÅÓÔ×Ï ÒÁÚÂÉÔÏ ÎÁ ËÏ-
ÎÅÞÎÏÅ ÞÉÓÌÏ ËÌÁÓÓÏ×, ÔÏ ÏÄÉÎ ÉÚ ËÌÁÓÓÏ× ÂÅÓËÏÎÅÞÅÎ. ðÒÉ k = 2 É l = 2
ÕÔ×ÅÒÖÄÅÎÉÅ ÍÏÖÎÏ ÓÆÏÒÍÕÌÉÒÏ×ÁÔØ ÔÁË: ÉÚ ÂÅÓËÏÎÅÞÎÏÇÏ ÍÎÏÖÅÓÔ×Á
ÌÀÄÅÊ ÍÏÖÎÏ ×ÙÂÒÁÔØ ÌÉÂÏ ÂÅÓËÏÎÅÞÎÏ ÍÎÏÇÏ ÐÏÐÁÒÎÏ ÚÎÁËÏÍÙÈ, ÌÉÂÏ ÂÅÓ-
ËÏÎÅÞÎÏ ÍÎÏÇÏ ÐÏÐÁÒÎÏ ÎÅÚÎÁËÏÍÙÈ. ëÏÎÅÞÎÙÊ ×ÁÒÉÁÎÔ ÜÔÏÇÏ ÕÔ×ÅÒÖÄÅ-
ÎÉÑ ¡ Ï ÔÏÍ, ÞÔÏ ÓÒÅÄÉ ÌÀÂÙÈ ÛÅÓÔÉ ÌÀÄÅÊ ÅÓÔØ ÌÉÂÏ ÔÒÉ ÐÏÐÁÒÎÏ ÚÎÁ-
ËÏÍÙÈ, ÌÉÂÏ ÔÒÉ ÐÏÐÁÒÎÏ ÎÅÚÎÁËÏÍÙÈ, ¡ ÉÚ×ÅÓÔÎÁÑ ÚÁÄÁÞÁ ÄÌÑ ÛËÏÌØÎÉ-
ËÏ×.)
íÎÏÖÅÓÔ×Ï ËÌÁÓÓÏ× ÜË×É×ÁÌÅÎÔÎÏÓÔÉ ÎÁÚÙ×ÁÀÔ ÆÁËÔÏÒ-ÍÎÏÖÅÓÔ×ÏÍ
ÍÎÏÖÅÓÔ×Á X ÐÏ ÏÔÎÏÛÅÎÉÀ ÜË×É×ÁÌÅÎÔÎÏÓÔÉ R. (åÓÌÉ ÏÔÎÏÛÅÎÉÅ ÓÏÇÌÁÓÏ-
×ÁÎÏ Ó ÄÏÐÏÌÎÉÔÅÌØÎÙÍÉ ÓÔÒÕËÔÕÒÁÍÉ ÎÁ X, ÐÏÌÕÞÁÀÔÓÑ ÆÁËÔÏÒ-ÇÒÕÐÐÙ,
ÆÁËÔÏÒ-ËÏÌØÃÁ É Ô. Ä.)
ïÔÎÏÛÅÎÉÑ ÜË×É×ÁÌÅÎÔÎÏÓÔÉ ÎÁÍ ÎÅ ÒÁÚ Åݾ ×ÓÔÒÅÔÑÔÓÑ, ÎÏ ÓÅÊÞÁÓ ÎÁÛÁ
ÏÓÎÏ×ÎÁÑ ÔÅÍÁ ¡ ÏÔÎÏÛÅÎÉÑ ÐÏÒÑÄËÁ.
âÉÎÁÒÎÏÅ ÏÔÎÏÛÅÎÉÅ 6 ÎÁ ÍÎÏÖÅÓÔ×Å X ÎÁÚÙ×ÁÅÔÓÑ ÏÔÎÏÛÅÎÉÅÍ ÞÁ-
ÓÔÉÞÎÏÇÏ ÐÏÒÑÄËÁ, ÅÓÌÉ ×ÙÐÏÌÎÅÎÙ ÔÁËÉÅ Ó×ÏÊÓÔ×Á:
(ÒÅÆÌÅËÓÉ×ÎÏÓÔØ) x 6 x ÄÌÑ ×ÓÅÈ x X;
(ÁÎÔÉÓÉÍÍÅÔÒÉÞÎÏÓÔØ) x 6 y É y 6 x x = y ÄÌÑ ×ÓÅÈ x, y X;
(ÔÒÁÎÚÉÔÉ×ÎÏÓÔØ) x 6 y É y 6 z x 6 z ÄÌÑ ×ÓÅÈ x, y, z X.
(óÌÅÄÕÑ ÔÒÁÄÉÃÉÉ, ÍÙ ÉÓÐÏÌØÚÕÅÍ ÓÉÍ×ÏÌ 6 ÎÅ ÂÕË×Õ) ËÁË ÚÎÁË ÏÔÎÏ-
ÛÅÎÉÑ ÐÏÒÑÄËÁ.) íÎÏÖÅÓÔ×Ï Ó ÚÁÄÁÎÎÙÍ ÎÁ Î¾Í ÏÔÎÏÛÅÎÉÅÍ ÞÁÓÔÉÞÎÏÇÏ
ÐÏÒÑÄËÁ ÎÁÚÙ×ÁÀÔ ÞÁÓÔÉÞÎÏ ÕÐÏÒÑÄÏÞÅÎÎÙÍ.
çÏ×ÏÒÑÔ, ÞÔÏ Ä×Á ÜÌÅÍÅÎÔÁ x, y ÞÁÓÔÉÞÎÏ ÕÐÏÒÑÄÏÞÅÎÎÏÇÏ ÍÎÏÖÅÓÔ×Á ÓÒÁ×-
ÎÉÍÙ, ÅÓÌÉ x 6 y ÉÌÉ y 6 x. úÁÍÅÔÉÍ, ÞÔÏ ÏÐÒÅÄÅÌÅÎÉÅ ÞÁÓÔÉÞÎÏÇÏ ÐÏÒÑÄËÁ
ÎÅ ÔÒÅÂÕÅÔ, ÞÔÏÂÙ ÌÀÂÙÅ Ä×Á ÜÌÅÍÅÎÔÁ ÍÎÏÖÅÓÔ×Á ÂÙÌÉ ÓÒÁ×ÎÉÍÙ. äÏÂÁ-
×É× ÜÔÏ ÔÒÅÂÏ×ÁÎÉÅ, ÍÙ ÐÏÌÕÞÉÍ ÏÐÒÅÄÅÌÅÎÉÅ ÌÉÎÅÊÎÏÇÏ ÐÏÒÑÄËÁ (ÌÉÎÅÊÎÏ
ÕÐÏÒÑÄÏÞÅÎÎÏÇÏ ÍÎÏÖÅÓÔ×Á).
ðÒÉ×ÅÄ¾Í ÎÅÓËÏÌØËÏ ÐÒÉÍÅÒÏ× ÞÁÓÔÉÞÎÙÈ ÐÏÒÑÄËÏ×:
þÉÓÌÏ×ÙÅ ÍÎÏÖÅÓÔ×Á Ó ÏÂÙÞÎÙÍ ÏÔÎÏÛÅÎÉÅÍ ÐÏÒÑÄËÁ (ÚÄÅÓØ ÐÏÒÑÄÏË
ÂÕÄÅÔ ÌÉÎÅÊÎÙÍ).
îÁ ÍÎÏÖÅÓÔ×Å R × R ×ÓÅÈ ÐÁÒ ÄÅÊÓÔ×ÉÔÅÌØÎÙÈ ÞÉÓÅÌ ÍÏÖÎÏ ××ÅÓÔÉ
ÞÁÓÔÉÞÎÙÊ ÐÏÒÑÄÏË, ÓÞÉÔÁÑ, ÞÔÏ hx
1
, x
2
i 6 hy
1
, y
2
i, ÅÓÌÉ x
1
6 x
2
É y
1
6
6 y
2
. üÔÏÔ ÐÏÒÑÄÏË ÕÖÅ ÎÅ ÂÕÄÅÔ ÌÉÎÅÊÎÙÍ: ÐÁÒÙ h0, 1i É h1, 0i ÎÅ
ÓÒÁ×ÎÉÍÙ.
§1. üË×É×ÁÌÅÎÔÎÏÓÔØ É ÐÏÒÑÄÏË                                             41

   úÁÄÁÞÁ 72. (ôÅÏÒÅÍÁ òÁÍÓÅÑ) íÎÏÖÅÓÔ×Ï ×ÓÅÈ k-ÜÌÅÍÅÎÔÎÙÈ ÐÏÄÍÎÏ-
ÖÅÓÔ× ÂÅÓËÏÎÅÞÎÏÇÏ ÍÎÏÖÅÓÔ×Á A ÒÁÚÂÉÔÏ ÎÁ l ËÌÁÓÓÏ× (k, l ¡ ÎÁÔÕÒÁÌØ-
ÎÙÅ ÞÉÓÌÁ). äÏËÁÖÉÔÅ, ÞÔÏ ÎÁÊľÔÓÑ ÂÅÓËÏÎÅÞÎÏÅ ÍÎÏÖÅÓÔ×Ï B ⊂ A, ×ÓÅ
k-ÜÌÅÍÅÎÔÎÙÅ ÐÏÄÍÎÏÖÅÓÔ×Á ËÏÔÏÒÏÇÏ ÐÒÉÎÁÄÌÅÖÁÔ ÏÄÎÏÍÕ ËÌÁÓÓÕ.
   (ðÒÉ k = 1 ÜÔÏ ÏÞÅ×ÉÄÎÏ: ÅÓÌÉ ÂÅÓËÏÎÅÞÎÏÅ ÍÎÏÖÅÓÔ×Ï ÒÁÚÂÉÔÏ ÎÁ ËÏ-
ÎÅÞÎÏÅ ÞÉÓÌÏ ËÌÁÓÓÏ×, ÔÏ ÏÄÉÎ ÉÚ ËÌÁÓÓÏ× ÂÅÓËÏÎÅÞÅÎ. ðÒÉ k = 2 É l = 2
ÕÔ×ÅÒÖÄÅÎÉÅ ÍÏÖÎÏ ÓÆÏÒÍÕÌÉÒÏ×ÁÔØ ÔÁË: ÉÚ ÂÅÓËÏÎÅÞÎÏÇÏ ÍÎÏÖÅÓÔ×Á
ÌÀÄÅÊ ÍÏÖÎÏ ×ÙÂÒÁÔØ ÌÉÂÏ ÂÅÓËÏÎÅÞÎÏ ÍÎÏÇÏ ÐÏÐÁÒÎÏ ÚÎÁËÏÍÙÈ, ÌÉÂÏ ÂÅÓ-
ËÏÎÅÞÎÏ ÍÎÏÇÏ ÐÏÐÁÒÎÏ ÎÅÚÎÁËÏÍÙÈ. ëÏÎÅÞÎÙÊ ×ÁÒÉÁÎÔ ÜÔÏÇÏ ÕÔ×ÅÒÖÄÅ-
ÎÉÑ ¡ Ï ÔÏÍ, ÞÔÏ ÓÒÅÄÉ ÌÀÂÙÈ ÛÅÓÔÉ ÌÀÄÅÊ ÅÓÔØ ÌÉÂÏ ÔÒÉ ÐÏÐÁÒÎÏ ÚÎÁ-
ËÏÍÙÈ, ÌÉÂÏ ÔÒÉ ÐÏÐÁÒÎÏ ÎÅÚÎÁËÏÍÙÈ, ¡ ÉÚ×ÅÓÔÎÁÑ ÚÁÄÁÞÁ ÄÌÑ ÛËÏÌØÎÉ-
ËÏ×.)

   íÎÏÖÅÓÔ×Ï ËÌÁÓÓÏ× ÜË×É×ÁÌÅÎÔÎÏÓÔÉ ÎÁÚÙ×ÁÀÔ ÆÁËÔÏÒ-ÍÎÏÖÅÓÔ×ÏÍ
ÍÎÏÖÅÓÔ×Á X ÐÏ ÏÔÎÏÛÅÎÉÀ ÜË×É×ÁÌÅÎÔÎÏÓÔÉ R. (åÓÌÉ ÏÔÎÏÛÅÎÉÅ ÓÏÇÌÁÓÏ-
×ÁÎÏ Ó ÄÏÐÏÌÎÉÔÅÌØÎÙÍÉ ÓÔÒÕËÔÕÒÁÍÉ ÎÁ X, ÐÏÌÕÞÁÀÔÓÑ ÆÁËÔÏÒ-ÇÒÕÐÐÙ,
ÆÁËÔÏÒ-ËÏÌØÃÁ É Ô. Ä.)
   ïÔÎÏÛÅÎÉÑ ÜË×É×ÁÌÅÎÔÎÏÓÔÉ ÎÁÍ ÎÅ ÒÁÚ Åݾ ×ÓÔÒÅÔÑÔÓÑ, ÎÏ ÓÅÊÞÁÓ ÎÁÛÁ
ÏÓÎÏ×ÎÁÑ ÔÅÍÁ ¡ ÏÔÎÏÛÅÎÉÑ ÐÏÒÑÄËÁ.
   âÉÎÁÒÎÏÅ ÏÔÎÏÛÅÎÉÅ 6 ÎÁ ÍÎÏÖÅÓÔ×Å X ÎÁÚÙ×ÁÅÔÓÑ ÏÔÎÏÛÅÎÉÅÍ ÞÁ-
ÓÔÉÞÎÏÇÏ ÐÏÒÑÄËÁ, ÅÓÌÉ ×ÙÐÏÌÎÅÎÙ ÔÁËÉÅ Ó×ÏÊÓÔ×Á:
   • (ÒÅÆÌÅËÓÉ×ÎÏÓÔØ) x 6 x ÄÌÑ ×ÓÅÈ x ∈ X;
   • (ÁÎÔÉÓÉÍÍÅÔÒÉÞÎÏÓÔØ) x 6 y É y 6 x ⇒ x = y ÄÌÑ ×ÓÅÈ x, y ∈ X;
   • (ÔÒÁÎÚÉÔÉ×ÎÏÓÔØ) x 6 y É y 6 z ⇒ x 6 z ÄÌÑ ×ÓÅÈ x, y, z ∈ X.
(óÌÅÄÕÑ ÔÒÁÄÉÃÉÉ, ÍÙ ÉÓÐÏÌØÚÕÅÍ ÓÉÍ×ÏÌ 6 (Á ÎÅ ÂÕË×Õ) ËÁË ÚÎÁË ÏÔÎÏ-
ÛÅÎÉÑ ÐÏÒÑÄËÁ.) íÎÏÖÅÓÔ×Ï Ó ÚÁÄÁÎÎÙÍ ÎÁ Î¾Í ÏÔÎÏÛÅÎÉÅÍ ÞÁÓÔÉÞÎÏÇÏ
ÐÏÒÑÄËÁ ÎÁÚÙ×ÁÀÔ ÞÁÓÔÉÞÎÏ ÕÐÏÒÑÄÏÞÅÎÎÙÍ.
   çÏ×ÏÒÑÔ, ÞÔÏ Ä×Á ÜÌÅÍÅÎÔÁ x, y ÞÁÓÔÉÞÎÏ ÕÐÏÒÑÄÏÞÅÎÎÏÇÏ ÍÎÏÖÅÓÔ×Á ÓÒÁ×-
ÎÉÍÙ, ÅÓÌÉ x 6 y ÉÌÉ y 6 x. úÁÍÅÔÉÍ, ÞÔÏ ÏÐÒÅÄÅÌÅÎÉÅ ÞÁÓÔÉÞÎÏÇÏ ÐÏÒÑÄËÁ
ÎÅ ÔÒÅÂÕÅÔ, ÞÔÏÂÙ ÌÀÂÙÅ Ä×Á ÜÌÅÍÅÎÔÁ ÍÎÏÖÅÓÔ×Á ÂÙÌÉ ÓÒÁ×ÎÉÍÙ. äÏÂÁ-
×É× ÜÔÏ ÔÒÅÂÏ×ÁÎÉÅ, ÍÙ ÐÏÌÕÞÉÍ ÏÐÒÅÄÅÌÅÎÉÅ ÌÉÎÅÊÎÏÇÏ ÐÏÒÑÄËÁ (ÌÉÎÅÊÎÏ
ÕÐÏÒÑÄÏÞÅÎÎÏÇÏ ÍÎÏÖÅÓÔ×Á).
   ðÒÉ×ÅÄ¾Í ÎÅÓËÏÌØËÏ ÐÒÉÍÅÒÏ× ÞÁÓÔÉÞÎÙÈ ÐÏÒÑÄËÏ×:
   • þÉÓÌÏ×ÙÅ ÍÎÏÖÅÓÔ×Á Ó ÏÂÙÞÎÙÍ ÏÔÎÏÛÅÎÉÅÍ ÐÏÒÑÄËÁ (ÚÄÅÓØ ÐÏÒÑÄÏË
     ÂÕÄÅÔ ÌÉÎÅÊÎÙÍ).
   • îÁ ÍÎÏÖÅÓÔ×Å R × R ×ÓÅÈ ÐÁÒ ÄÅÊÓÔ×ÉÔÅÌØÎÙÈ ÞÉÓÅÌ ÍÏÖÎÏ ××ÅÓÔÉ
     ÞÁÓÔÉÞÎÙÊ ÐÏÒÑÄÏË, ÓÞÉÔÁÑ, ÞÔÏ hx1, x2i 6 hy1 , y2i, ÅÓÌÉ x1 6 x2 É y1 6
     6 y2 . üÔÏÔ ÐÏÒÑÄÏË ÕÖÅ ÎÅ ÂÕÄÅÔ ÌÉÎÅÊÎÙÍ: ÐÁÒÙ h0, 1i É h1, 0i ÎÅ
     ÓÒÁ×ÎÉÍÙ.