Математическая логика и теория алгоритмов. Самохин А.В. - 42 стр.

UptoLike

Составители: 

Рубрика: 

42 çÌÁ×Á II. õÐÏÒÑÄÏÞÅÎÎÙÅ ÍÎÏÖÅÓÔ×Á
îÁ ÍÎÏÖÅÓÔ×Å ÆÕÎËÃÉÊ Ó ÄÅÊÓÔ×ÉÔÅÌØÎÙÍÉ ÁÒÇÕÍÅÎÔÁÍÉ É ÚÎÁÞÅÎÉÑ-
ÍÉ ÍÏÖÎÏ ××ÅÓÔÉ ÞÁÓÔÉÞÎÙÊ ÐÏÒÑÄÏË, ÓÞÉÔÁÑ, ÞÔÏ f 6 g, ÅÓÌÉ f(x) 6
6 g(x) ÐÒÉ ×ÓÅÈ x R. üÔÏÔ ÐÏÒÑÄÏË ÎÅ ÂÕÄÅÔ ÌÉÎÅÊÎÙÍ.
îÁ ÍÎÏÖÅÓÔ×Å ÃÅÌÙÈ ÐÏÌÏÖÉÔÅÌØÎÙÈ ÞÉÓÅÌ ÍÏÖÎÏ ÏÐÒÅÄÅÌÉÔØ ÐÏÒÑ-
ÄÏË, ÓÞÉÔÁÑ, ÞÔÏ x 6 y, ÅÓÌÉ x ÄÅÌÉÔ y. üÔÏÔ ÐÏÒÑÄÏË ÔÏÖÅ ÎÅ ÂÕÄÅÔ
ÌÉÎÅÊÎÙÍ.
ïÔÎÏÛÅÎÉÅ ÌÀÂÏÊ ÐÒÏÓÔÏÊ ÄÅÌÉÔÅÌØ ÞÉÓÌÁ x Ñ×ÌÑÅÔÓÑ ÔÁËÖÅ É ÄÅ-
ÌÉÔÅÌÅÍ ÞÉÓÌÁ y ÎÅ ÂÕÄÅÔ ÏÔÎÏÛÅÎÉÅÍ ÐÏÒÑÄËÁ ÎÁ ÍÎÏÖÅÓÔ×Å ÃÅÌÙÈ
ÐÏÌÏÖÉÔÅÌØÎÙÈ ÞÉÓÅÌ ÎÏ ÒÅÆÌÅËÓÉ×ÎÏ É ÔÒÁÎÚÉÔÉ×ÎÏ, ÎÏ ÎÅ ÁÎÔÉ-
ÓÉÍÍÅÔÒÉÞÎÏ).
ðÕÓÔØ U ¡ ÐÒÏÉÚ×ÏÌØÎÏÅ ÍÎÏÖÅÓÔ×Ï. ôÏÇÄÁ ÎÁ ÍÎÏÖÅÓÔ×Å P (U) ×ÓÅÈ
ÐÏÄÍÎÏÖÅÓÔ× ÍÎÏÖÅÓÔ×Á U ÏÔÎÏÛÅÎÉÅ ×ËÌÀÞÅÎÉÑ ÂÕÄÅÔ ÞÁÓÔÉÞÎÙÍ
ÐÏÒÑÄËÏÍ.
îÁ ÂÕË×ÁÈ ÒÕÓÓËÏÇÏ ÁÌÆÁ×ÉÔÁ ÔÒÁÄÉÃÉÑ ÏÐÒÅÄÅÌÑÅÔ ÎÅËÏÔÏÒÙÊ ÐÏÒÑÄÏË
6  6 × 6 . . . 6 Ñ). üÔÏÔ ÐÏÒÑÄÏË ÌÉÎÅÅÎ ¡ ÐÒÏ ÌÀÂÙÅ Ä×Å ÂÕË×Ù
ÍÏÖÎÏ ÓËÁÚÁÔØ, ËÁËÁÑ ÉÚ ÎÉÈ ÒÁÎØÛÅ (ÐÒÉ ÎÅÏÂÈÏÄÉÍÏÓÔÉ ÚÁÇÌÑÎÕ× ×
ÓÌÏ×ÁÒØ).
îÁ ÓÌÏ×ÁÈ ÒÕÓÓËÏÇÏ ÁÌÆÁ×ÉÔÁ ÏÐÒÅÄÅ̾ΠÌÅËÓÉËÏÇÒÁÆÉÞÅÓËÉÊ ÐÏÒÑÄÏË
(ËÁË × ÓÌÏ×ÁÒÅ). æÏÒÍÁÌØÎÏ ÏÐÒÅÄÅÌÉÔØ ÅÇÏ ÍÏÖÎÏ ÔÁË: ÅÓÌÉ ÓÌÏ×Ï x
Ñ×ÌÑÅÔÓÑ ÎÁÞÁÌÏÍ ÓÌÏ×Á y, ÔÏ x 6 y (ÎÁÐÒÉÍÅÒ, ËÁÎÔ 6 ËÁÎÔÏÒ). åÓÌÉ
ÎÉ ÏÄÎÏ ÉÚ ÓÌÏ× ÎÅ Ñ×ÌÑÅÔÓÑ ÎÁÞÁÌÏÍ ÄÒÕÇÏÇÏ, ÐÏÓÍÏÔÒÉÍ ÎÁ ÐÅÒ×ÕÀ ÐÏ
ÐÏÒÑÄËÕ ÂÕË×Õ, × ËÏÔÏÒÏÊ ÓÌÏ×Á ÏÔÌÉÞÁÀÔÓÑ: ÔÏ ÓÌÏ×Ï, ÇÄÅ ÜÔÁ ÂÕË×Á
ÍÅÎØÛÅ × ÁÌÆÁ×ÉÔÎÏÍ ÐÏÒÑÄËÅ, É ÂÕÄÅÔ ÍÅÎØÛÅ. üÔÏÔ ÐÏÒÑÄÏË ÔÁËÖÅ
ÌÉÎÅÅÎ (ÉÎÁÞÅ ÞÔÏ ÂÙ ÄÅÌÁÌÉ ÓÏÓÔÁ×ÉÔÅÌÉ ÓÌÏ×ÁÒÅÊ?).
ïÔÎÏÛÅÎÉÅ ÒÁ×ÅÎÓÔ×Á ((x 6 y) (x = y)) ÔÁËÖÅ Ñ×ÌÑÅÔÓÑ ÏÔÎÏÛÅÎÉÅÍ
ÞÁÓÔÉÞÎÏÇÏ ÐÏÒÑÄËÁ, ÄÌÑ ËÏÔÏÒÏÇÏ ÎÉËÁËÉÅ Ä×Á ÒÁÚÌÉÞÎÙÈ ÜÌÅÍÅÎÔÁ ÎÅ
ÓÒÁ×ÎÉÍÙ.
ðÒÉ×ÅÄ¾Í ÔÅÐÅÒØ ÂÙÔÏ×ÏÊ ÐÒÉÍÅÒ. ðÕÓÔØ ÅÓÔØ ÍÎÏÖÅÓÔ×Ï X ËÁÒÔÏÎ-
ÎÙÈ ËÏÒÏÂÏË. ÷×ÅÄ¾Í ÎÁ Î¾Í ÐÏÒÑÄÏË, ÓÞÉÔÁÑ, ÞÔÏ x 6 y, ÅÓÌÉ ËÏÒÏÂËÁ x
ÃÅÌÉËÏÍ ÐÏÍÅÝÁÅÔÓÑ ×ÎÕÔÒØ ËÏÒÏÂËÉ y (ÉÌÉ ÅÓÌÉ x É y ¡ ÏÄÎÁ É ÔÁ ÖÅ
ËÏÒÏÂËÁ). ÷ ÚÁ×ÉÓÉÍÏÓÔÉ ÏÔ ÎÁÂÏÒÁ ËÏÒÏÂÏË ÜÔÏÔ ÐÏÒÑÄÏË ÍÏÖÅÔ ÂÙÔØ
ÉÌÉ ÎÅ ÂÙÔØ ÌÉÎÅÊÎÙÍ.
ðÕÓÔØ x, y ¡ ÜÌÅÍÅÎÔÙ ÞÁÓÔÉÞÎÏ ÕÐÏÒÑÄÏÞÅÎÎÏÇÏ ÍÎÏÖÅÓÔ×Á X. çÏ×ÏÒÑÔ,
ÞÔÏ x < y, ÅÓÌÉ x 6 y É x 6= y. äÌÑ ÜÔÏÇÏ ÏÔÎÏÛÅÎÉÑ ×ÙÐÏÌÎÅÎÙ ÔÁËÉÅ
Ó×ÏÊÓÔ×Á:
x 6< x;
(x < y) É (y < z) x < z.
(ðÅÒ×ÏÅ ÏÞÅ×ÉÄÎÏ, ÐÒÏ×ÅÒÉÍ ×ÔÏÒÏÅ: ÅÓÌÉ x < y É y < z, ÔÏ ÅÓÔØ x 6 y, x 6= y,
42                                    çÌÁ×Á II. õÐÏÒÑÄÏÞÅÎÎÙÅ ÍÎÏÖÅÓÔ×Á

     • îÁ ÍÎÏÖÅÓÔ×Å ÆÕÎËÃÉÊ Ó ÄÅÊÓÔ×ÉÔÅÌØÎÙÍÉ ÁÒÇÕÍÅÎÔÁÍÉ É ÚÎÁÞÅÎÉÑ-
       ÍÉ ÍÏÖÎÏ ××ÅÓÔÉ ÞÁÓÔÉÞÎÙÊ ÐÏÒÑÄÏË, ÓÞÉÔÁÑ, ÞÔÏ f 6 g, ÅÓÌÉ f (x) 6
       6 g(x) ÐÒÉ ×ÓÅÈ x ∈ R. üÔÏÔ ÐÏÒÑÄÏË ÎÅ ÂÕÄÅÔ ÌÉÎÅÊÎÙÍ.
     • îÁ ÍÎÏÖÅÓÔ×Å ÃÅÌÙÈ ÐÏÌÏÖÉÔÅÌØÎÙÈ ÞÉÓÅÌ ÍÏÖÎÏ ÏÐÒÅÄÅÌÉÔØ ÐÏÒÑ-
       ÄÏË, ÓÞÉÔÁÑ, ÞÔÏ x 6 y, ÅÓÌÉ x ÄÅÌÉÔ y. üÔÏÔ ÐÏÒÑÄÏË ÔÏÖÅ ÎÅ ÂÕÄÅÔ
       ÌÉÎÅÊÎÙÍ.
     • ïÔÎÏÛÅÎÉÅ ÌÀÂÏÊ ÐÒÏÓÔÏÊ ÄÅÌÉÔÅÌØ ÞÉÓÌÁ x Ñ×ÌÑÅÔÓÑ ÔÁËÖÅ É ÄÅ-
       ÌÉÔÅÌÅÍ ÞÉÓÌÁ y ÎÅ ÂÕÄÅÔ ÏÔÎÏÛÅÎÉÅÍ ÐÏÒÑÄËÁ ÎÁ ÍÎÏÖÅÓÔ×Å ÃÅÌÙÈ
       ÐÏÌÏÖÉÔÅÌØÎÙÈ ÞÉÓÅÌ (ÏÎÏ ÒÅÆÌÅËÓÉ×ÎÏ É ÔÒÁÎÚÉÔÉ×ÎÏ, ÎÏ ÎÅ ÁÎÔÉ-
       ÓÉÍÍÅÔÒÉÞÎÏ).
     • ðÕÓÔØ U ¡ ÐÒÏÉÚ×ÏÌØÎÏÅ ÍÎÏÖÅÓÔ×Ï. ôÏÇÄÁ ÎÁ ÍÎÏÖÅÓÔ×Å P (U) ×ÓÅÈ
       ÐÏÄÍÎÏÖÅÓÔ× ÍÎÏÖÅÓÔ×Á U ÏÔÎÏÛÅÎÉÅ ×ËÌÀÞÅÎÉÑ ⊂ ÂÕÄÅÔ ÞÁÓÔÉÞÎÙÍ
       ÐÏÒÑÄËÏÍ.
     • îÁ ÂÕË×ÁÈ ÒÕÓÓËÏÇÏ ÁÌÆÁ×ÉÔÁ ÔÒÁÄÉÃÉÑ ÏÐÒÅÄÅÌÑÅÔ ÎÅËÏÔÏÒÙÊ ÐÏÒÑÄÏË
       (Á 6  6 × 6 . . . 6 Ñ). üÔÏÔ ÐÏÒÑÄÏË ÌÉÎÅÅÎ ¡ ÐÒÏ ÌÀÂÙÅ Ä×Å ÂÕË×Ù
       ÍÏÖÎÏ ÓËÁÚÁÔØ, ËÁËÁÑ ÉÚ ÎÉÈ ÒÁÎØÛÅ (ÐÒÉ ÎÅÏÂÈÏÄÉÍÏÓÔÉ ÚÁÇÌÑÎÕ× ×
       ÓÌÏ×ÁÒØ).
     • îÁ ÓÌÏ×ÁÈ ÒÕÓÓËÏÇÏ ÁÌÆÁ×ÉÔÁ ÏÐÒÅÄÅ̾ΠÌÅËÓÉËÏÇÒÁÆÉÞÅÓËÉÊ ÐÏÒÑÄÏË
       (ËÁË × ÓÌÏ×ÁÒÅ). æÏÒÍÁÌØÎÏ ÏÐÒÅÄÅÌÉÔØ ÅÇÏ ÍÏÖÎÏ ÔÁË: ÅÓÌÉ ÓÌÏ×Ï x
       Ñ×ÌÑÅÔÓÑ ÎÁÞÁÌÏÍ ÓÌÏ×Á y, ÔÏ x 6 y (ÎÁÐÒÉÍÅÒ, ËÁÎÔ 6 ËÁÎÔÏÒ). åÓÌÉ
       ÎÉ ÏÄÎÏ ÉÚ ÓÌÏ× ÎÅ Ñ×ÌÑÅÔÓÑ ÎÁÞÁÌÏÍ ÄÒÕÇÏÇÏ, ÐÏÓÍÏÔÒÉÍ ÎÁ ÐÅÒ×ÕÀ ÐÏ
       ÐÏÒÑÄËÕ ÂÕË×Õ, × ËÏÔÏÒÏÊ ÓÌÏ×Á ÏÔÌÉÞÁÀÔÓÑ: ÔÏ ÓÌÏ×Ï, ÇÄÅ ÜÔÁ ÂÕË×Á
       ÍÅÎØÛÅ × ÁÌÆÁ×ÉÔÎÏÍ ÐÏÒÑÄËÅ, É ÂÕÄÅÔ ÍÅÎØÛÅ. üÔÏÔ ÐÏÒÑÄÏË ÔÁËÖÅ
       ÌÉÎÅÅÎ (ÉÎÁÞÅ ÞÔÏ ÂÙ ÄÅÌÁÌÉ ÓÏÓÔÁ×ÉÔÅÌÉ ÓÌÏ×ÁÒÅÊ?).
     • ïÔÎÏÛÅÎÉÅ ÒÁ×ÅÎÓÔ×Á ((x 6 y) ⇔ (x = y)) ÔÁËÖÅ Ñ×ÌÑÅÔÓÑ ÏÔÎÏÛÅÎÉÅÍ
       ÞÁÓÔÉÞÎÏÇÏ ÐÏÒÑÄËÁ, ÄÌÑ ËÏÔÏÒÏÇÏ ÎÉËÁËÉÅ Ä×Á ÒÁÚÌÉÞÎÙÈ ÜÌÅÍÅÎÔÁ ÎÅ
       ÓÒÁ×ÎÉÍÙ.
     • ðÒÉ×ÅÄ¾Í ÔÅÐÅÒØ ÂÙÔÏ×ÏÊ ÐÒÉÍÅÒ. ðÕÓÔØ ÅÓÔØ ÍÎÏÖÅÓÔ×Ï X ËÁÒÔÏÎ-
       ÎÙÈ ËÏÒÏÂÏË. ÷×ÅÄ¾Í ÎÁ Î¾Í ÐÏÒÑÄÏË, ÓÞÉÔÁÑ, ÞÔÏ x 6 y, ÅÓÌÉ ËÏÒÏÂËÁ x
       ÃÅÌÉËÏÍ ÐÏÍÅÝÁÅÔÓÑ ×ÎÕÔÒØ ËÏÒÏÂËÉ y (ÉÌÉ ÅÓÌÉ x É y ¡ ÏÄÎÁ É ÔÁ ÖÅ
       ËÏÒÏÂËÁ). ÷ ÚÁ×ÉÓÉÍÏÓÔÉ ÏÔ ÎÁÂÏÒÁ ËÏÒÏÂÏË ÜÔÏÔ ÐÏÒÑÄÏË ÍÏÖÅÔ ÂÙÔØ
       ÉÌÉ ÎÅ ÂÙÔØ ÌÉÎÅÊÎÙÍ.
   ðÕÓÔØ x, y ¡ ÜÌÅÍÅÎÔÙ ÞÁÓÔÉÞÎÏ ÕÐÏÒÑÄÏÞÅÎÎÏÇÏ ÍÎÏÖÅÓÔ×Á X. çÏ×ÏÒÑÔ,
ÞÔÏ x < y, ÅÓÌÉ x 6 y É x 6= y. äÌÑ ÜÔÏÇÏ ÏÔÎÏÛÅÎÉÑ ×ÙÐÏÌÎÅÎÙ ÔÁËÉÅ
Ó×ÏÊÓÔ×Á:

                                    x 6< x;
                         (x < y) É (y < z) ⇒ x < z.

(ðÅÒ×ÏÅ ÏÞÅ×ÉÄÎÏ, ÐÒÏ×ÅÒÉÍ ×ÔÏÒÏÅ: ÅÓÌÉ x < y É y < z, ÔÏ ÅÓÔØ x 6 y, x 6= y,