Математическая логика и теория алгоритмов. Самохин А.В. - 44 стр.

UptoLike

Составители: 

Рубрика: 

44 çÌÁ×Á II. õÐÏÒÑÄÏÞÅÎÎÙÅ ÍÎÏÖÅÓÔ×Á
ðÕÓÔØ X É Y ¡ Ä×Á ÎÅÐÅÒÅÓÅËÁÀÝÉÈÓÑ ÞÁÓÔÉÞÎÏ ÕÐÏÒÑÄÏÞÅÎÎÙÈ ÍÎÏ-
ÖÅÓÔ×Á. ôÏÇÄÁ ÎÁ ÉÈ ÏÂßÅÄÉÎÅÎÉÉ ÍÏÖÎÏ ÏÐÒÅÄÅÌÉÔØ ÞÁÓÔÉÞÎÙÊ ÐÏ-
ÒÑÄÏË ÔÁË: ×ÎÕÔÒÉ ËÁÖÄÏÇÏ ÍÎÏÖÅÓÔ×Á ÜÌÅÍÅÎÔÙ ÓÒÁ×ÎÉ×ÁÀÔÓÑ ËÁË
ÒÁÎØÛÅ, Á ÌÀÂÏÊ ÜÌÅÍÅÎÔ ÍÎÏÖÅÓÔ×Á X ÐÏ ÏÐÒÅÄÅÌÅÎÉÀ ÍÅÎØÛÅ ÌÀÂÏÇÏ
ÜÌÅÍÅÎÔÁ Y . üÔÏ ÍÎÏÖÅÓÔ×Ï ÅÓÔÅÓÔ×ÅÎÎÏ ÏÂÏÚÎÁÞÉÔØ X + Y . (ðÏÒÑÄÏË
ÂÕÄÅÔ ÌÉÎÅÊÎÙÍ, ÅÓÌÉ ÏÎ ÂÙÌ ÔÁËÏ×ÙÍ ÎÁ ËÁÖÄÏÍ ÉÚ ÍÎÏÖÅÓÔ×.)
üÔÏ ÖÅ ÏÂÏÚÎÁÞÅÎÉÅ ÐÒÉÍÅÎÑÀÔ É ÄÌÑ ÐÅÒÅÓÅËÁÀÝÉÈÓÑ ÄÁÖÅ ÓÏ-
×ÐÁÄÁÀÝÉÈ ÍÎÏÖÅÓÔ×). îÁÐÒÉÍÅÒ, ÇÏ×ÏÒÑ Ï ÕÐÏÒÑÄÏÞÅÎÎÏÍ ÍÎÏÖÅ-
ÓÔ×Å N + N, ÍÙ ÂÅÒ¾Í ÄÌÑ ÎÅÐÅÒÅÓÅËÁÀÝÉÅÓÑ ËÏÐÉÉ ÎÁÔÕÒÁÌØÎÏÇÏ ÒÑ-
ÄÁ {0, 1, 2, . . .} É {0, 1, 2 . . . } É ÒÁÓÓÍÁÔÒÉ×ÁÅÍ ÍÎÏÖÅÓÔ×Ï {0, 1, 2, . . .,
0, 1, 2, . . . }, ÐÒÉÞ¾Í k 6 l ÐÒÉ ×ÓÅÈ k É l, Á ×ÎÕÔÒÉ ËÁÖÄÏÊ ËÏÐÉÉ ÐÏÒÑÄÏË
ÏÂÙÞÎÙÊ.
ðÕÓÔØ (X, 6
X
) É (Y, 6
Y
) ¡ Ä×Á ÕÐÏÒÑÄÏÞÅÎÎÙÈ ÍÎÏÖÅÓÔ×Á. íÏÖÎÏ
ÏÐÒÅÄÅÌÉÔØ ÐÏÒÑÄÏË ÎÁ ÐÒÏÉÚ×ÅÄÅÎÉÉ X × Y ÎÅÓËÏÌØËÉÍÉ ÓÐÏÓÏÂÁÍÉ.
íÏÖÎÏ ÓÞÉÔÁÔØ, ÞÔÏ hx
1
, y
1
i 6 hx
2
, y
2
i, ÅÓÌÉ x
1
6
X
x
2
É y
1
6
Y
y
2
(ÐÏ-
ËÏÏÒÄÉÎÁÔÎÏÅ ÓÒÁ×ÎÅÎÉÅ). üÔÏÔ ÐÏÒÑÄÏË, ÏÄÎÁËÏ, ÎÅ ÂÕÄÅÔ ÌÉÎÅÊÎÙÍ,
ÄÁÖÅ ÅÓÌÉ ÉÓÈÏÄÎÙÅ ÐÏÒÑÄËÉ É ÂÙÌÉ ÌÉÎÅÊÎÙÍÉ: ÅÓÌÉ ÐÅÒ×ÁÑ ËÏÏÒ-
ÄÉÎÁÔÁ ÂÏÌØÛÅ Õ ÏÄÎÏÊ ÐÁÒÙ, Á ×ÔÏÒÁÑ Õ ÄÒÕÇÏÊ, ËÁË ÉÈ ÓÒÁ×ÎÉÔØ?
þÔÏÂÙ ÐÏÌÕÞÉÔØ ÌÉÎÅÊÎÙÊ ÐÏÒÑÄÏË, ÄÏÇÏ×ÏÒÉÍÓÑ, ËÁËÁÑ ËÏÏÒÄÉÎÁÔÁ
ÂÕÄÅÔ ÇÌÁ×ÎÏÊ É ÂÕÄÅÍ ÓÎÁÞÁÌÁ ÓÒÁ×ÎÉ×ÁÔØ ÐÏ ÎÅÊ, Á ÐÏÔÏÍ ÓÌÕ-
ÞÁÅ ÒÁ×ÅÎÓÔ×Á) ¡ ÐÏ ÄÒÕÇÏÊ. åÓÌÉ ÇÌÁ×ÎÏÊ ÓÞÉÔÁÔØ X-ËÏÏÒÄÉÎÁÔÕ, ÔÏ
hx
1
, y
1
i 6 hx
2
, y
2
i, ÅÓÌÉ x
1
<
X
x
2
ÉÌÉ ÅÓÌÉ x
1
= x
2
, Á y
1
6
Y
y
2
. ïÄÎÁËÏ ÐÏ
ÔÅÈÎÉÞÅÓËÉÍ ÐÒÉÞÉÎÁÍ ÕÄÏÂÎÏ ÓÞÉÔÁÔØ ÇÌÁ×ÎÏÊ ×ÔÏÒÕÀ ËÏÏÒÄÉÎÁÔÕ.
çÏ×ÏÒÑ Ï ÐÒÏÉÚ×ÅÄÅÎÉÉ Ä×ÕÈ ÌÉÎÅÊÎÏ ÕÐÏÒÑÄÏÞÅÎÎÙÈ ÍÎÏÖÅÓÔ× ËÁË Ï
ÌÉÎÅÊÎÏ ÕÐÏÒÑÄÏÞÅÎÎÏÍ ÍÎÏÖÅÓÔ×Å, ÍÙ × ÄÁÌØÎÅÊÛÅÍ ÐÏÄÒÁÚÕÍÅ×ÁÅÍ
ÉÍÅÎÎÏ ÔÁËÏÊ ÐÏÒÑÄÏË (ÓÎÁÞÁÌÁ ÓÒÁ×ÎÉ×ÁÅÍ ÐÏ ×ÔÏÒÏÊ ËÏÏÒÄÉÎÁÔÅ).
úÁÄÁÞÁ 76. äÏËÁÖÉÔÅ, ÞÔÏ × ÞÁÓÔÉÞÎÏ ÕÐÏÒÑÄÏÞÅÎÎÏÍ ÍÎÏÖÅÓÔ×Å
N × N (ÐÏÒÑÄÏË ÐÏËÏÏÒÄÉÎÁÔÎÙÊ) ÎÅÔ ÂÅÓËÏÎÅÞÎÏÇÏ ÐÏÄÍÎÏÖÅÓÔ×Á, ÌÀ-
ÂÙÅ Ä×Á ÜÌÅÍÅÎÔÁ ËÏÔÏÒÏÇÏ ÂÙÌÉ ÂÙ ÎÅÓÒÁ×ÎÉÍÙ. ÷ÅÒÎÏ ÌÉ ÁÎÁÌÏÇÉÞÎÏÅ
ÕÔ×ÅÒÖÄÅÎÉÅ ÄÌÑ Z × Z?
úÁÄÁÞÁ 77. äÏËÁÖÉÔÅ ÁÎÁÌÏÇÉÞÎÏÅ ÕÔ×ÅÒÖÄÅÎÉÅ ÄÌÑ N
k
(ÐÏÒÑÄÏË ÐÏ-
ËÏÏÒÄÉÎÁÔÎÙÊ).
úÁÄÁÞÁ 78. ðÕÓÔØ U ¡ ËÏÎÅÞÎÏÅ ÍÎÏÖÅÓÔ×Ï ÉÚ n ÜÌÅÍÅÎÔÏ×. òÁÓ-
ÓÍÏÔÒÉÍ ÍÎÏÖÅÓÔ×Ï P (U) ×ÓÅÈ ÐÏÄÍÎÏÖÅÓÔ× ÍÎÏÖÅÓÔ×Á U, ÕÐÏÒÑÄÏÞÅÎ-
ÎÏÅ ÐÏ ×ËÌÀÞÅÎÉÀ. ëÁËÏ×Á ÍÁËÓÉÍÁÌØÎÏ ×ÏÚÍÏÖÎÁÑ ÍÏÝÎÏÓÔØ ÍÎÏÖÅÓÔ×Á
S P (U), ÅÓÌÉ ÉÎÄÕÃÉÒÏ×ÁÎÎÙÊ ÎÁ S ÐÏÒÑÄÏË ÌÉÎÅÅÎ? ÅÓÌÉ ÎÉËÁËÉÅ Ä×Á
ÜÌÅÍÅÎÔÁ S ÎÅ ÓÒÁ×ÎÉÍÙ? (õËÁÚÁÎÉÅ: ÓÍ. ÚÁÄÁÞÕ 12.)
úÁÄÁÞÁ 79. óËÏÌØËÏ ÓÕÝÅÓÔ×ÕÅÔ ÒÁÚÌÉÞÎÙÈ ÌÉÎÅÊÎÙÈ ÐÏÒÑÄËÏ× ÎÁ
44                                           çÌÁ×Á II. õÐÏÒÑÄÏÞÅÎÎÙÅ ÍÎÏÖÅÓÔ×Á

     • ðÕÓÔØ X É Y ¡ Ä×Á ÎÅÐÅÒÅÓÅËÁÀÝÉÈÓÑ ÞÁÓÔÉÞÎÏ ÕÐÏÒÑÄÏÞÅÎÎÙÈ ÍÎÏ-
       ÖÅÓÔ×Á. ôÏÇÄÁ ÎÁ ÉÈ ÏÂßÅÄÉÎÅÎÉÉ ÍÏÖÎÏ ÏÐÒÅÄÅÌÉÔØ ÞÁÓÔÉÞÎÙÊ ÐÏ-
       ÒÑÄÏË ÔÁË: ×ÎÕÔÒÉ ËÁÖÄÏÇÏ ÍÎÏÖÅÓÔ×Á ÜÌÅÍÅÎÔÙ ÓÒÁ×ÎÉ×ÁÀÔÓÑ ËÁË
       ÒÁÎØÛÅ, Á ÌÀÂÏÊ ÜÌÅÍÅÎÔ ÍÎÏÖÅÓÔ×Á X ÐÏ ÏÐÒÅÄÅÌÅÎÉÀ ÍÅÎØÛÅ ÌÀÂÏÇÏ
       ÜÌÅÍÅÎÔÁ Y . üÔÏ ÍÎÏÖÅÓÔ×Ï ÅÓÔÅÓÔ×ÅÎÎÏ ÏÂÏÚÎÁÞÉÔØ X + Y . (ðÏÒÑÄÏË
       ÂÕÄÅÔ ÌÉÎÅÊÎÙÍ, ÅÓÌÉ ÏÎ ÂÙÌ ÔÁËÏ×ÙÍ ÎÁ ËÁÖÄÏÍ ÉÚ ÍÎÏÖÅÓÔ×.)
           üÔÏ ÖÅ ÏÂÏÚÎÁÞÅÎÉÅ ÐÒÉÍÅÎÑÀÔ É ÄÌÑ ÐÅÒÅÓÅËÁÀÝÉÈÓÑ (É ÄÁÖÅ ÓÏ-
       ×ÐÁÄÁÀÝÉÈ ÍÎÏÖÅÓÔ×). îÁÐÒÉÍÅÒ, ÇÏ×ÏÒÑ Ï ÕÐÏÒÑÄÏÞÅÎÎÏÍ ÍÎÏÖÅ-
       ÓÔ×Å N + N, ÍÙ ÂÅÒ¾Í ÄÌÑ ÎÅÐÅÒÅÓÅËÁÀÝÉÅÓÑ ËÏÐÉÉ ÎÁÔÕÒÁÌØÎÏÇÏ ÒÑ-
       ÄÁ {0, 1, 2, . . . } É {0, 1, 2 . . . } É ÒÁÓÓÍÁÔÒÉ×ÁÅÍ ÍÎÏÖÅÓÔ×Ï {0, 1, 2, . . . ,
       0, 1, 2, . . . }, ÐÒÉÞ¾Í k 6 l ÐÒÉ ×ÓÅÈ k É l, Á ×ÎÕÔÒÉ ËÁÖÄÏÊ ËÏÐÉÉ ÐÏÒÑÄÏË
       ÏÂÙÞÎÙÊ.
     • ðÕÓÔØ (X, 6X ) É (Y, 6Y ) ¡ Ä×Á ÕÐÏÒÑÄÏÞÅÎÎÙÈ ÍÎÏÖÅÓÔ×Á. íÏÖÎÏ
       ÏÐÒÅÄÅÌÉÔØ ÐÏÒÑÄÏË ÎÁ ÐÒÏÉÚ×ÅÄÅÎÉÉ X × Y ÎÅÓËÏÌØËÉÍÉ ÓÐÏÓÏÂÁÍÉ.
       íÏÖÎÏ ÓÞÉÔÁÔØ, ÞÔÏ hx1 , y1i 6 hx2 , y2i, ÅÓÌÉ x1 6X x2 É y1 6Y y2 (ÐÏ-
       ËÏÏÒÄÉÎÁÔÎÏÅ ÓÒÁ×ÎÅÎÉÅ). üÔÏÔ ÐÏÒÑÄÏË, ÏÄÎÁËÏ, ÎÅ ÂÕÄÅÔ ÌÉÎÅÊÎÙÍ,
       ÄÁÖÅ ÅÓÌÉ ÉÓÈÏÄÎÙÅ ÐÏÒÑÄËÉ É ÂÙÌÉ ÌÉÎÅÊÎÙÍÉ: ÅÓÌÉ ÐÅÒ×ÁÑ ËÏÏÒ-
       ÄÉÎÁÔÁ ÂÏÌØÛÅ Õ ÏÄÎÏÊ ÐÁÒÙ, Á ×ÔÏÒÁÑ Õ ÄÒÕÇÏÊ, ËÁË ÉÈ ÓÒÁ×ÎÉÔØ?
       þÔÏÂÙ ÐÏÌÕÞÉÔØ ÌÉÎÅÊÎÙÊ ÐÏÒÑÄÏË, ÄÏÇÏ×ÏÒÉÍÓÑ, ËÁËÁÑ ËÏÏÒÄÉÎÁÔÁ
       ÂÕÄÅÔ ÇÌÁ×ÎÏÊ É ÂÕÄÅÍ ÓÎÁÞÁÌÁ ÓÒÁ×ÎÉ×ÁÔØ ÐÏ ÎÅÊ, Á ÐÏÔÏÍ (× ÓÌÕ-
       ÞÁÅ ÒÁ×ÅÎÓÔ×Á) ¡ ÐÏ ÄÒÕÇÏÊ. åÓÌÉ ÇÌÁ×ÎÏÊ ÓÞÉÔÁÔØ X-ËÏÏÒÄÉÎÁÔÕ, ÔÏ
       hx1 , y1i 6 hx2, y2 i, ÅÓÌÉ x1