Математическая логика и теория алгоритмов. Самохин А.В. - 54 стр.

UptoLike

Составители: 

Рубрика: 

54 çÌÁ×Á II. õÐÏÒÑÄÏÞÅÎÎÙÅ ÍÎÏÖÅÓÔ×Á
ðÒÉÍÅÒÙ ×ÐÏÌÎÅ ÕÐÏÒÑÄÏÞÅÎÎÙÈ ÍÎÏÖÅÓÔ×: N, N + k (ÚÄÅÓØ k ÏÂÏÚÎÁÞÁÅÔ
ËÏÎÅÞÎÏÅ ÌÉÎÅÊÎÏ ÕÐÏÒÑÄÏÞÅÎÎÏÅ ÍÎÏÖÅÓÔ×Ï ÉÚ k ÜÌÅÍÅÎÔÏ×), N + N, N ×N.
îÁÛÁ ÃÅÌØ ¡ ÐÏÎÑÔØ, ËÁË ÍÏÇÕÔ ÂÙÔØ ÕÓÔÒÏÅÎÙ ×ÐÏÌÎÅ ÕÐÏÒÑÄÏÞÅÎÎÙÅ
ÍÎÏÖÅÓÔ×Á. îÁÞÎ¾Í Ó ÎÅÓËÏÌØËÉÈ ÐÒÏÓÔÙÈ ÚÁÍÅÞÁÎÉÊ.
÷ÐÏÌÎÅ ÕÐÏÒÑÄÏÞÅÎÎÏÅ ÍÎÏÖÅÓÔ×Ï ÉÍÅÅÔ ÎÁÉÍÅÎØÛÉÊ ÜÌÅÍÅÎÔ. (îÅÐÏ-
ÓÒÅÄÓÔ×ÅÎÎÏÅ ÓÌÅÄÓÔ×ÉÅ ÏÐÒÅÄÅÌÅÎÉÑ.)
äÌÑ ËÁÖÄÏÇÏ ÜÌÅÍÅÎÔÁ x ×ÐÏÌÎÅ ÕÐÏÒÑÄÏÞÅÎÎÏÇÏ ÍÎÏÖÅÓÔ×Á (ËÒÏÍÅ
ÎÁÉÂÏÌØÛÅÇÏ) ÅÓÔØ ÎÅÐÏÓÒÅÄÓÔ×ÅÎÎÏ ÓÌÅÄÕÀÝÉÊ ÚÁ ÎÉÍ ÜÌÅÍÅÎÔ y (ÜÔÏ
ÚÎÁÞÉÔ, ÞÔÏ y > x, ÎÏ ÎÅ ÓÕÝÅÓÔ×ÕÅÔ z, ÄÌÑ ËÏÔÏÒÏÇÏ y > z > x). ÷
ÓÁÍÏÍ ÄÅÌÅ, ÅÓÌÉ ÍÎÏÖÅÓÔ×Ï ×ÓÅÈ ÜÌÅÍÅÎÔÏ×, ÂÏÌØÛÉÈ x, ÎÅÐÕÓÔÏ, ÔÏ ×
Î¾Í ÅÓÔØ ÍÉÎÉÍÁÌØÎÙÊ ÜÌÅÍÅÎÔ y, ËÏÔÏÒÙÊ É ÂÕÄÅÔ ÉÓËÏÍÙÍ. ôÁËÏÊ
ÜÌÅÍÅÎÔ ÌÏÇÉÞÎÏ ÏÂÏÚÎÁÞÁÔØ x + 1, ÓÌÅÄÕÀÝÉÊ ÚÁ ÎÉÍ ¡ x + 2 É Ô. Ä.
îÅËÏÔÏÒÙÅ ÜÌÅÍÅÎÔÙ ×ÐÏÌÎÅ ÕÐÏÒÑÄÏÞÅÎÎÏÇÏ ÍÎÏÖÅÓÔ×Á ÍÏÇÕÔ ÎÅ
ÉÍÅÔØ ÎÅÐÏÓÒÅÄÓÔ×ÅÎÎÏ ÐÒÅÄÙÄÕÝÅÇÏ. îÁÐÒÉÍÅÒ, × ÍÎÏÖÅÓÔ×Å N +
+ N ÅÓÔØ Ä×Á ÜÌÅÍÅÎÔÁ, ÎÅ ÉÍÅÀÝÉÈ ÎÅÐÏÓÒÅÄÓÔ×ÅÎÎÏ ÐÒÅÄÙÄÕÝÅÇÏ
(ÎÁÉÍÅÎØÛÉÊ ÜÌÅÍÅÎÔ, Á ÔÁËÖÅ ÎÁÉÍÅÎØÛÉÊ ÜÌÅÍÅÎÔ ×ÔÏÒÏÊ ËÏÐÉÉ
ÎÁÔÕÒÁÌØÎÏÇÏ ÒÑÄÁ). ôÁËÉÅ ÜÌÅÍÅÎÔÙ ÎÁÚÙ×ÁÀÔ ÐÒÅÄÅÌØÎÙÍÉ.
÷ÓÑËÉÊ ÜÌÅÍÅÎÔ ÕÐÏÒÑÄÏÞÅÎÎÏÇÏ ÍÎÏÖÅÓÔ×Á ÉÍÅÅÔ ×ÉÄ z + n, ÇÄÅ z ¡
ÐÒÅÄÅÌØÎÙÊ, Á n ¡ ÎÁÔÕÒÁÌØÎÏÅ ÞÉÓÌÏ (ÏÂÏÚÎÁÞÅÎÉÅ z + n ÐÏÎÉÍÁÅÔ-
ÓÑ × ÏÐÉÓÁÎÎÏÍ ×ÙÛÅ ÓÍÙÓÌÅ). ÷ ÓÁÍÏÍ ÄÅÌÅ, ÅÓÌÉ z ÎÅ ÐÒÅÄÅÌØÎÙÊ,
×ÏÚØÍ¾Í ÐÒÅÄÙÄÕÝÉÊ, ÅÓÌÉ É ÏÎ ÎÅÐÒÅÄÅÌØÎÙÊ ¡ ÔÏ ÅÇÏ ÐÒÅÄÙÄÕÝÉÊ
É Ô. Ä., ÐÏËÁ ÎÅ ÄÏÊÄ¾Í ÄÏ ÐÒÅÄÅÌØÎÏÇÏ ÅÓËÏÎÅÞÎÏ ÐÒÏÄÏÌÖÁÔØÓÑ ÜÔÏ
ÎÅ ÍÏÖÅÔ, ÔÁË ËÁË ÍÎÏÖÅÓÔ×Ï ×ÐÏÌÎÅ ÕÐÏÒÑÄÏÞÅÎÏ). ïÞÅ×ÉÄÎÏ, ÔÁËÏÅ
ÐÒÅÄÓÔÁ×ÌÅÎÉÅ ÏÄÎÏÚÎÁÞÎÏ (Õ ÜÌÅÍÅÎÔÁ ÍÏÖÅÔ ÂÙÔØ ÔÏÌØËÏ ÏÄÉÎ ÎÅÐÏ-
ÓÒÅÄÓÔ×ÅÎÎÏ ÐÒÅÄÙÄÕÝÉÊ).
ìÀÂÏÅ ÏÇÒÁÎÉÞÅÎÎÏÅ Ó×ÅÒÈÕ ÍÎÏÖÅÓÔ×Ï ÜÌÅÍÅÎÔÏ× ×ÐÏÌÎÅ ÕÐÏÒÑÄÏÞÅÎ-
ÎÏÇÏ ÍÎÏÖÅÓÔ×Á ÉÍÅÅÔ ÔÏÞÎÕÀ ×ÅÒÈÎÀÀ ÇÒÁÎØ. (ëÁË ÏÂÙÞÎÏ, ÐÏÄÍÎÏ-
ÖÅÓÔ×Ï X ÞÁÓÔÉÞÎÏ ÕÐÏÒÑÄÏÞÅÎÎÏÇÏ ÍÎÏÖÅÓÔ×Á A ÎÁÚÙ×ÁÅÔÓÑ ÏÇÒÁÎÉ-
ÞÅÎÎÙÍ Ó×ÅÒÈÕ, ÅÓÌÉ ÏÎÏ ÉÍÅÅÔ ×ÅÒÈÎÀÀ ÇÒÁÎÉÃÕ, Ô. Å. ÜÌÅÍÅÎÔ a A,
ÄÌÑ ËÏÔÏÒÏÇÏ x 6 a ÐÒÉ ×ÓÅÈ x X. åÓÌÉ ÓÒÅÄÉ ×ÓÅÈ ×ÅÒÈÎÉÈ ÇÒÁÎÉÃ
ÄÁÎÎÏÇÏ ÐÏÄÍÎÏÖÅÓÔ×Á ÅÓÔØ ÎÁÉÍÅÎØÛÁÑ, ÔÏ ÏÎÁ ÎÁÚÙ×ÁÅÔÓÑ ÔÏÞÎÏÊ
×ÅÒÈÎÅÊ ÇÒÁÎØÀ.)
÷ ÓÁÍÏÍ ÄÅÌÅ, ÍÎÏÖÅÓÔ×Ï ×ÓÅÈ ×ÅÒÈÎÉÈ ÇÒÁÎÉà ÎÅÐÕÓÔÏ É ÐÏÔÏÍÕ
ÉÍÅÅÔ ÎÁÉÍÅÎØÛÉÊ ÜÌÅÍÅÎÔ. (úÁÍÅÔÉÍ × ÓËÏÂËÁÈ, ÞÔÏ ×ÏÐÒÏÓ Ï ÔÏÞÎÏÊ
ÎÉÖÎÅÊ ÇÒÁÎÉ ÄÌÑ ×ÐÏÌÎÅ ÕÐÏÒÑÄÏÞÅÎÎÏÇÏ ÍÎÏÖÅÓÔ×Á ÔÒÉ×ÉÁÌÅÎ, ÔÁË
ËÁË ×ÓÑËÏÅ ÍÎÏÖÅÓÔ×Ï ÉÍÅÅÔ ÎÁÉÍÅÎØÛÉÊ ÜÌÅÍÅÎÔ.)
ðÕÓÔØ A ¡ ÐÒÏÉÚ×ÏÌØÎÏÅ ×ÐÏÌÎÅ ÕÐÏÒÑÄÏÞÅÎÎÏÅ ÍÎÏÖÅÓÔ×Ï. åÇÏ ÎÁÉÍÅÎØ-
ÛÉÊ ÜÌÅÍÅÎÔ ÏÂÏÚÎÁÞÉÍ ÞÅÒÅÚ 0. óÌÅÄÕÀÝÉÊ ÚÁ ÎÉÍ ÜÌÅÍÅÎÔ ÏÂÏÚÎÁÞÉÍ ÞÅ-
ÒÅÚ 1, ÓÌÅÄÕÀÝÉÊ ÚÁ 1 ¡ ÞÅÒÅÚ 2 É Ô. Ä. åÓÌÉ ÍÎÏÖÅÓÔ×Ï ËÏÎÅÞÎÏ, ÐÒÏÃÅÓÓ
54                                   çÌÁ×Á II. õÐÏÒÑÄÏÞÅÎÎÙÅ ÍÎÏÖÅÓÔ×Á

   ðÒÉÍÅÒÙ ×ÐÏÌÎÅ ÕÐÏÒÑÄÏÞÅÎÎÙÈ ÍÎÏÖÅÓÔ×: N, N + k (ÚÄÅÓØ k ÏÂÏÚÎÁÞÁÅÔ
ËÏÎÅÞÎÏÅ ÌÉÎÅÊÎÏ ÕÐÏÒÑÄÏÞÅÎÎÏÅ ÍÎÏÖÅÓÔ×Ï ÉÚ k ÜÌÅÍÅÎÔÏ×), N + N, N × N.
   îÁÛÁ ÃÅÌØ ¡ ÐÏÎÑÔØ, ËÁË ÍÏÇÕÔ ÂÙÔØ ÕÓÔÒÏÅÎÙ ×ÐÏÌÎÅ ÕÐÏÒÑÄÏÞÅÎÎÙÅ
ÍÎÏÖÅÓÔ×Á. îÁÞÎ¾Í Ó ÎÅÓËÏÌØËÉÈ ÐÒÏÓÔÙÈ ÚÁÍÅÞÁÎÉÊ.
     • ÷ÐÏÌÎÅ ÕÐÏÒÑÄÏÞÅÎÎÏÅ ÍÎÏÖÅÓÔ×Ï ÉÍÅÅÔ ÎÁÉÍÅÎØÛÉÊ ÜÌÅÍÅÎÔ. (îÅÐÏ-
       ÓÒÅÄÓÔ×ÅÎÎÏÅ ÓÌÅÄÓÔ×ÉÅ ÏÐÒÅÄÅÌÅÎÉÑ.)
     • äÌÑ ËÁÖÄÏÇÏ ÜÌÅÍÅÎÔÁ x ×ÐÏÌÎÅ ÕÐÏÒÑÄÏÞÅÎÎÏÇÏ ÍÎÏÖÅÓÔ×Á (ËÒÏÍÅ
       ÎÁÉÂÏÌØÛÅÇÏ) ÅÓÔØ ÎÅÐÏÓÒÅÄÓÔ×ÅÎÎÏ ÓÌÅÄÕÀÝÉÊ ÚÁ ÎÉÍ ÜÌÅÍÅÎÔ y (ÜÔÏ
       ÚÎÁÞÉÔ, ÞÔÏ y > x, ÎÏ ÎÅ ÓÕÝÅÓÔ×ÕÅÔ z, ÄÌÑ ËÏÔÏÒÏÇÏ y > z > x). ÷
       ÓÁÍÏÍ ÄÅÌÅ, ÅÓÌÉ ÍÎÏÖÅÓÔ×Ï ×ÓÅÈ ÜÌÅÍÅÎÔÏ×, ÂÏÌØÛÉÈ x, ÎÅÐÕÓÔÏ, ÔÏ ×
       Î¾Í ÅÓÔØ ÍÉÎÉÍÁÌØÎÙÊ ÜÌÅÍÅÎÔ y, ËÏÔÏÒÙÊ É ÂÕÄÅÔ ÉÓËÏÍÙÍ. ôÁËÏÊ
       ÜÌÅÍÅÎÔ ÌÏÇÉÞÎÏ ÏÂÏÚÎÁÞÁÔØ x + 1, ÓÌÅÄÕÀÝÉÊ ÚÁ ÎÉÍ ¡ x + 2 É Ô. Ä.
     • îÅËÏÔÏÒÙÅ ÜÌÅÍÅÎÔÙ ×ÐÏÌÎÅ ÕÐÏÒÑÄÏÞÅÎÎÏÇÏ ÍÎÏÖÅÓÔ×Á ÍÏÇÕÔ ÎÅ
       ÉÍÅÔØ ÎÅÐÏÓÒÅÄÓÔ×ÅÎÎÏ ÐÒÅÄÙÄÕÝÅÇÏ. îÁÐÒÉÍÅÒ, × ÍÎÏÖÅÓÔ×Å N +
       + N ÅÓÔØ Ä×Á ÜÌÅÍÅÎÔÁ, ÎÅ ÉÍÅÀÝÉÈ ÎÅÐÏÓÒÅÄÓÔ×ÅÎÎÏ ÐÒÅÄÙÄÕÝÅÇÏ
       (ÎÁÉÍÅÎØÛÉÊ ÜÌÅÍÅÎÔ, Á ÔÁËÖÅ ÎÁÉÍÅÎØÛÉÊ ÜÌÅÍÅÎÔ ×ÔÏÒÏÊ ËÏÐÉÉ
       ÎÁÔÕÒÁÌØÎÏÇÏ ÒÑÄÁ). ôÁËÉÅ ÜÌÅÍÅÎÔÙ ÎÁÚÙ×ÁÀÔ ÐÒÅÄÅÌØÎÙÍÉ.
     • ÷ÓÑËÉÊ ÜÌÅÍÅÎÔ ÕÐÏÒÑÄÏÞÅÎÎÏÇÏ ÍÎÏÖÅÓÔ×Á ÉÍÅÅÔ ×ÉÄ z + n, ÇÄÅ z ¡
       ÐÒÅÄÅÌØÎÙÊ, Á n ¡ ÎÁÔÕÒÁÌØÎÏÅ ÞÉÓÌÏ (ÏÂÏÚÎÁÞÅÎÉÅ z + n ÐÏÎÉÍÁÅÔ-
       ÓÑ × ÏÐÉÓÁÎÎÏÍ ×ÙÛÅ ÓÍÙÓÌÅ). ÷ ÓÁÍÏÍ ÄÅÌÅ, ÅÓÌÉ z ÎÅ ÐÒÅÄÅÌØÎÙÊ,
       ×ÏÚØÍ¾Í ÐÒÅÄÙÄÕÝÉÊ, ÅÓÌÉ É ÏÎ ÎÅÐÒÅÄÅÌØÎÙÊ ¡ ÔÏ ÅÇÏ ÐÒÅÄÙÄÕÝÉÊ
       É Ô. Ä., ÐÏËÁ ÎÅ ÄÏÊÄ¾Í ÄÏ ÐÒÅÄÅÌØÎÏÇÏ (ÂÅÓËÏÎÅÞÎÏ ÐÒÏÄÏÌÖÁÔØÓÑ ÜÔÏ
       ÎÅ ÍÏÖÅÔ, ÔÁË ËÁË ÍÎÏÖÅÓÔ×Ï ×ÐÏÌÎÅ ÕÐÏÒÑÄÏÞÅÎÏ). ïÞÅ×ÉÄÎÏ, ÔÁËÏÅ
       ÐÒÅÄÓÔÁ×ÌÅÎÉÅ ÏÄÎÏÚÎÁÞÎÏ (Õ ÜÌÅÍÅÎÔÁ ÍÏÖÅÔ ÂÙÔØ ÔÏÌØËÏ ÏÄÉÎ ÎÅÐÏ-
       ÓÒÅÄÓÔ×ÅÎÎÏ ÐÒÅÄÙÄÕÝÉÊ).
     • ìÀÂÏÅ ÏÇÒÁÎÉÞÅÎÎÏÅ Ó×ÅÒÈÕ ÍÎÏÖÅÓÔ×Ï ÜÌÅÍÅÎÔÏ× ×ÐÏÌÎÅ ÕÐÏÒÑÄÏÞÅÎ-
       ÎÏÇÏ ÍÎÏÖÅÓÔ×Á ÉÍÅÅÔ ÔÏÞÎÕÀ ×ÅÒÈÎÀÀ ÇÒÁÎØ. (ëÁË ÏÂÙÞÎÏ, ÐÏÄÍÎÏ-
       ÖÅÓÔ×Ï X ÞÁÓÔÉÞÎÏ ÕÐÏÒÑÄÏÞÅÎÎÏÇÏ ÍÎÏÖÅÓÔ×Á A ÎÁÚÙ×ÁÅÔÓÑ ÏÇÒÁÎÉ-
       ÞÅÎÎÙÍ Ó×ÅÒÈÕ, ÅÓÌÉ ÏÎÏ ÉÍÅÅÔ ×ÅÒÈÎÀÀ ÇÒÁÎÉÃÕ, Ô. Å. ÜÌÅÍÅÎÔ a ∈ A,
       ÄÌÑ ËÏÔÏÒÏÇÏ x 6 a ÐÒÉ ×ÓÅÈ x ∈ X. åÓÌÉ ÓÒÅÄÉ ×ÓÅÈ ×ÅÒÈÎÉÈ ÇÒÁÎÉÃ
       ÄÁÎÎÏÇÏ ÐÏÄÍÎÏÖÅÓÔ×Á ÅÓÔØ ÎÁÉÍÅÎØÛÁÑ, ÔÏ ÏÎÁ ÎÁÚÙ×ÁÅÔÓÑ ÔÏÞÎÏÊ
       ×ÅÒÈÎÅÊ ÇÒÁÎØÀ.)
          ÷ ÓÁÍÏÍ ÄÅÌÅ, ÍÎÏÖÅÓÔ×Ï ×ÓÅÈ ×ÅÒÈÎÉÈ ÇÒÁÎÉà ÎÅÐÕÓÔÏ É ÐÏÔÏÍÕ
       ÉÍÅÅÔ ÎÁÉÍÅÎØÛÉÊ ÜÌÅÍÅÎÔ. (úÁÍÅÔÉÍ × ÓËÏÂËÁÈ, ÞÔÏ ×ÏÐÒÏÓ Ï ÔÏÞÎÏÊ
       ÎÉÖÎÅÊ ÇÒÁÎÉ ÄÌÑ ×ÐÏÌÎÅ ÕÐÏÒÑÄÏÞÅÎÎÏÇÏ ÍÎÏÖÅÓÔ×Á ÔÒÉ×ÉÁÌÅÎ, ÔÁË
       ËÁË ×ÓÑËÏÅ ÍÎÏÖÅÓÔ×Ï ÉÍÅÅÔ ÎÁÉÍÅÎØÛÉÊ ÜÌÅÍÅÎÔ.)
   ðÕÓÔØ A ¡ ÐÒÏÉÚ×ÏÌØÎÏÅ ×ÐÏÌÎÅ ÕÐÏÒÑÄÏÞÅÎÎÏÅ ÍÎÏÖÅÓÔ×Ï. åÇÏ ÎÁÉÍÅÎØ-
ÛÉÊ ÜÌÅÍÅÎÔ ÏÂÏÚÎÁÞÉÍ ÞÅÒÅÚ 0. óÌÅÄÕÀÝÉÊ ÚÁ ÎÉÍ ÜÌÅÍÅÎÔ ÏÂÏÚÎÁÞÉÍ ÞÅ-
ÒÅÚ 1, ÓÌÅÄÕÀÝÉÊ ÚÁ 1 ¡ ÞÅÒÅÚ 2 É Ô. Ä. åÓÌÉ ÍÎÏÖÅÓÔ×Ï ËÏÎÅÞÎÏ, ÐÒÏÃÅÓÓ