Сборник задач по высшей математике. Часть IV. Интегралы. Дифференциальные уравнения. Самохин А.В - 6 стр.

UptoLike

Рубрика: 

çìá÷á I
éÎÔÅÇÒÁÌØÎÏÅ ÉÓÞÉÓÌÅÎÉÅ ÆÕÎËÃÉÉ
ÏÄÎÏÊ ÐÅÒÅÍÅÎÎÏÊ
§1. îÅÏÐÒÅÄÅÌÅÎÎÙÊ ÉÎÔÅÇÒÁÌ. ïÓÎÏ×ÎÙÅ Ó×ÏÊÓÔ×Á ÎÅ-
ÏÐÒÅÄÅÌÅÎÎÏÇÏ ÉÎÔÅÇÒÁÌÁ
1.1. ïÂÝÉÅ ÐÏÎÑÔÉÑ
ïÐÒÅÄÅÌÅÎÉÅ 1. æÕÎËÃÉÑ F(x) ÎÁÚÙ×ÁÅÔÓÑ ÐÅÒ×ÏÏÂÒÁÚÎÏÊ ÄÌÑ ÆÕÎËÃÉÉ
f(x) ÎÁ (a, b), ÅÓÌÉ ÄÌÑ ÌÀÂÏÇÏ x (a, b) F
0
(x) = f(x).
ðÒÉÍÅÒ 1. æÕÎËÃÉÑ sin(5x 1) ÅÓÔØ ÐÅÒ×ÏÏÂÒÁÚÎÁÑ ÄÌÑ ÆÕÎËÃÉÉ
5 cos(5x 1) ÎÁ ×ÓÅÊ ÞÉÓÌÏ×ÏÊ ÐÒÑÍÏÊ, ÔÁË ËÁË (sin(5x 1))
0
= 5 cos(5x 1).
åÓÌÉ ÆÕÎËÃÉÑ f(x) ÉÍÅÅÔ ÎÁ (a, b) ÐÅÒ×ÏÏÂÒÁÚÎÕÀ F
0
(x), ÔÏ ÍÎÏÖÅÓÔ×Ï
×ÓÅÈ ÐÅÒ×ÏÏÂÒÁÚÎÙÈ ÆÕÎËÃÉÉ f(x) ÎÁ (a, b) ÓÏ×ÐÁÄÁÅÔ Ó ÍÎÏÖÅÓÔ×ÏÍ ÆÕÎËÃÉÊ
F (x) = F
0
(x) + C, ÇÄÅ C ¡ ÌÀÂÁÑ ÐÏÓÔÏÑÎÎÁÑ.
ïÐÒÅÄÅÌÅÎÉÅ 2. îÅÏÐÒÅÄÅÌÅÎÎÙÍ ÉÎÔÅÇÒÁÌÏÍ ÏÔ ÆÕÎËÃÉÉ f (x) ÎÁ (a, b)
ÎÁÚÙ×ÁÅÔÓÑ ÍÎÏÖÅÓÔ×Ï ×ÓÅÈ ÐÅÒ×ÏÏÂÒÁÚÎÙÈ F (x) (ÅÓÌÉ ÏÎÉ ÓÕÝÅÓÔ×ÕÀÔ)
ÆÕÎËÃÉÉ f (x) ÎÁ (a, b). îÅÏÐÒÅÄÅÌÅÎÎÙÊ ÉÎÔÅÇÒÁÌ ÏÔ f(x) ÎÁ (a, b) ÏÂÏÚÎÁÞÁ-
ÅÔÓÑ ÓÉÍ×ÏÌÏÍ
R
f(x) dx; f(x) ÎÁÚÙ×ÁÅÔÓÑ ÐÒÉ ÜÔÏÍ ÐÏÄÙÎÔÅÇÒÁÌØÎÏÊ ÆÕÎË-
ÃÉÅÊ.
ðÒÉÍÅÒ 2. ðÕÓÔØ f(x) = x
2
. æÕÎËÃÉÑ F (x) =
x
3
3
ÅÓÔØ ÐÅÒ×ÏÏÂÒÁÚÎÁÑ ÄÌÑ
ÆÕÎËÃÉÉ f (x) = x
2
ÎÁ ÐÒÏÍÅÖÕÔËÅ (−∞; +), ÔÁË ËÁË
x
3
3
0
=
3x
2
3
= x
2
.
ðÏÜÔÏÍÕ
Z
x
2
dx =
x
3
3
+ C.
ðÒÉÍÅÒ 3. ðÕÓÔØ f(x) =
1
x
. ðÅÒ×ÏÏÂÒÁÚÎÏÊ f(x) =
1
x
ÎÁ ÐÒÏÍÅÖÕÔËÅ
(0, +) Ñ×ÌÑÅÔÓÑ ÆÕÎËÃÉÑ F (x) = ln x, Á ÎÁ ÐÒÏÍÅÖÕÔËÅ (−∞; 0) ÆÕÎËÃÉÑ
F (x) = ln(x). ôÁËÉÍ ÏÂÒÁÚÏÍ, ÆÕÎËÃÉÑ F (x) = ln |x| ÅÓÔØ ÐÅÒ×ÏÏÂÒÁÚÎÁÑ
ÄÌÑ ÆÕÎËÃÉÉ f(x) =
1
x
ÎÁ ÌÀÂÏÍ ÐÒÏÍÅÖÕÔËÅ, ÎÅ ÓÏÄÅÒÖÁÝÅÍ 0. ðÏÜÔÏÍÕ
Z
dx
x
= ln |x| + C.
ïÓÎÏ×ÎÙÅ Ó×ÏÊÓÔ×Á ÎÅÏÐÒÅÄÅÌÅÎÎÏÇÏ ÉÎÔÅÇÒÁÌÁ.
1) d
R
f(x) dx = f(x) dx;
2)
R
f(x) dx
0
= f(x);
6
                               çìá÷á I
  éÎÔÅÇÒÁÌØÎÏÅ ÉÓÞÉÓÌÅÎÉÅ ÆÕÎËÃÉÉ
         ÏÄÎÏÊ ÐÅÒÅÍÅÎÎÏÊ

§1. îÅÏÐÒÅÄÅÌÅÎÎÙÊ ÉÎÔÅÇÒÁÌ. ïÓÎÏ×ÎÙÅ Ó×ÏÊÓÔ×Á ÎÅ-
    ÏÐÒÅÄÅÌÅÎÎÏÇÏ ÉÎÔÅÇÒÁÌÁ
1.1. ïÂÝÉÅ ÐÏÎÑÔÉÑ

    ïÐÒÅÄÅÌÅÎÉÅ 1. æÕÎËÃÉÑ F (x) ÎÁÚÙ×ÁÅÔÓÑ ÐÅÒ×ÏÏÂÒÁÚÎÏÊ ÄÌÑ ÆÕÎËÃÉÉ
f (x) ÎÁ (a, b), ÅÓÌÉ ÄÌÑ ÌÀÂÏÇÏ x ∈ (a, b) F 0 (x) = f (x).
    ðÒÉÍÅÒ 1. æÕÎËÃÉÑ sin(5x − 1) ÅÓÔØ ÐÅÒ×ÏÏÂÒÁÚÎÁÑ ÄÌÑ ÆÕÎËÃÉÉ
5 cos(5x − 1) ÎÁ ×ÓÅÊ ÞÉÓÌÏ×ÏÊ ÐÒÑÍÏÊ, ÔÁË ËÁË (sin(5x − 1)) 0 = 5 cos(5x − 1).
    åÓÌÉ ÆÕÎËÃÉÑ f (x) ÉÍÅÅÔ ÎÁ (a, b) ÐÅÒ×ÏÏÂÒÁÚÎÕÀ F0 (x), ÔÏ ÍÎÏÖÅÓÔ×Ï
×ÓÅÈ ÐÅÒ×ÏÏÂÒÁÚÎÙÈ ÆÕÎËÃÉÉ f (x) ÎÁ (a, b) ÓÏ×ÐÁÄÁÅÔ Ó ÍÎÏÖÅÓÔ×ÏÍ ÆÕÎËÃÉÊ
F (x) = F0(x) + C, ÇÄÅ C ¡ ÌÀÂÁÑ ÐÏÓÔÏÑÎÎÁÑ.
    ïÐÒÅÄÅÌÅÎÉÅ 2. îÅÏÐÒÅÄÅÌÅÎÎÙÍ ÉÎÔÅÇÒÁÌÏÍ ÏÔ ÆÕÎËÃÉÉ f (x) ÎÁ (a, b)
ÎÁÚÙ×ÁÅÔÓÑ ÍÎÏÖÅÓÔ×Ï ×ÓÅÈ ÐÅÒ×ÏÏÂÒÁÚÎÙÈ F (x) (ÅÓÌÉ ÏÎÉ ÓÕÝÅÓÔ×ÕÀÔ)
ÆÕÎËÃÉÉ f (x) ÎÁ  R (a, b). îÅÏÐÒÅÄÅÌÅÎÎÙÊ ÉÎÔÅÇÒÁÌ ÏÔ f (x) ÎÁ (a, b) ÏÂÏÚÎÁÞÁ-
ÅÔÓÑ ÓÉÍ×ÏÌÏÍ f (x) dx; f (x) ÎÁÚÙ×ÁÅÔÓÑ ÐÒÉ ÜÔÏÍ ÐÏÄÙÎÔÅÇÒÁÌØÎÏÊ ÆÕÎË-
ÃÉÅÊ.
                                                        3
    ðÒÉÍÅÒ 2. ðÕÓÔØ f (x) = x2. æÕÎËÃÉÑ F (x) = x3 ÅÓÔØ ÐÅÒ×ÏÏÂÒÁÚÎÁÑ ÄÌÑ
                                                              3 0      2
ÆÕÎËÃÉÉ f (x) = x ÎÁ ÐÒÏÍÅÖÕÔËÅ (−∞; +∞), ÔÁË ËÁË x3
                      2
                                                                    = 3x3 = x2.
ðÏÜÔÏÍÕ
                                           x3
                                 Z
                                    2
                                   x dx =      + C.
                                            3
    ðÒÉÍÅÒ 3. ðÕÓÔØ f (x) = x1 . ðÅÒ×ÏÏÂÒÁÚÎÏÊ f (x) = x1 ÎÁ ÐÒÏÍÅÖÕÔËÅ
(0, +∞) Ñ×ÌÑÅÔÓÑ ÆÕÎËÃÉÑ F (x) = ln x, Á ÎÁ ÐÒÏÍÅÖÕÔËÅ (−∞; 0) ÆÕÎËÃÉÑ
F (x) = ln(−x). ôÁËÉÍ ÏÂÒÁÚÏÍ, ÆÕÎËÃÉÑ F (x) = ln |x| ÅÓÔØ ÐÅÒ×ÏÏÂÒÁÚÎÁÑ
ÄÌÑ ÆÕÎËÃÉÉ f (x) = x1 ÎÁ ÌÀÂÏÍ ÐÒÏÍÅÖÕÔËÅ, ÎÅ ÓÏÄÅÒÖÁÝÅÍ 0. ðÏÜÔÏÍÕ
                                   dx
                                 Z
                                      = ln |x| + C.
                                    x
    ïÓÎÏ×ÎÙÅ
     R          Ó×ÏÊÓÔ×Á ÎÅÏÐÒÅÄÅÌÅÎÎÏÇÏ ÉÎÔÅÇÒÁÌÁ.
1) d f (x) dx = f (x) dx;
     R         0
2)     f (x) dx = f (x);
                                        6