Конспект лекций по математическому анализу. Шерстнев А.Н. - 202 стр.

UptoLike

Составители: 

Рубрика: 

                         Zx
   2. fUNKCIQ F (x)  a f (t) dt (a  x < b) NE UBYWAET. pRI \TOM F (x)
                     Zb
OGRANI^ENA TTOGDA a f (t)dt < +1.
   3. pUSTX f (t)  g (t) (a  t < b). tOGDA
     Zb                    Zb                       Zb        Zb
 (A) g(t)dt < +1 ) f (t)dt < +1; PRI \TOM f (t) dt  g(t) dt,
      a                     a                        a         a
          Zb                                       Zb
 (B) ESLI f (t) dt RASHODITSQ, TO RASHODITSQ I g(t) dt.
           a                                        a

   4.   pUSTX g(t) > 0 I tlim      f (t) = > 0. tOGDA INTEGRALY () SHODQTSQ
                               !b, g (t)
ILI RASHODQTSQ ODNOWREMENNO.
  dOKAVEM  Z b P. 3(A) I ^ASTX P. 4 (OSTALXNYE UTWERVDENIQ
                                                          Z x { (!!)).
     eSLI a g(t) dt < +1, TO SU]ESTWUET M = xlim              g(t) dt. iZ NERAWEN-
        Zx            Zx                             !bZ, x a
STWA a f (t) dt  a g(t) dt (x < b) SLEDUET, ^TO a f (t) dt  M (x < b).
            Zb                   Zx
pO\TOMU a f (t) dt = xlim   !b, a
                                    f (t) dt  M < +1.
     w USLOWIQH P. 4 PUSTX " (0 < " < ) PROIZWOLXNO. tOGDA SU]ESTWUET
c < b, ^TO , " < fg((tt)) < + " (c < t < b), TO ESTX ( , ")g(t) <
                                                        Zb
f (t) < ( + ")g(t) (c < t < b). pUSTX, NAPRIMER, f (t) dt < +1. tOGDA
Zb                       Zb                    Zb        a
                                             1
    f (t) dt < +1 I g(t) dt  , " f (t) dt < +1. s U^ETOM 126.3
 c                        Zc b                  c
OTS@DA SLEDUET, ^TO a g(t) dt < +1: >
                      Z +1 ,x
     5. p R I M E R.         e dx < +1. fpOLOVIM W P. 3 f (x) = e,x ; g(x) =
                       1       x                                        x
e (1  x < +1).g
 , x

     6. Zu P R A V N E N ZI E. iSSLEDOWATX NA SHODIMOSTX SLEDU@]IE INTEG-
           +1       x dx; +1 x e,x dx ( ;  > 0).
RALY 1 arctg     x           1



                                       202