ВУЗ:
Составители:
Рубрика:
|lementy teorii neograni~ennyh
operatorow
x247. pONQTIE ZAMKNUTOGO OPERATORA
1. lINEJNYM OPERATOROM (W DALXNEJ[EM PROSTO OPERATOROM) T W
GILXBERTOWOM PROSTRANSTWE H NAZYWAETSQ LINEJNOE OTOBRAVENIE
T : D(T ) ! H , GDE D(T ) | LINEAL W H (ON NAZYWAETSQ OBLASTX@ OPRE-
DELENIQ T ). oTMETIM, ^TO DLQ L@BOGO LINEJNOGO OPERATORA T = . oPE-
RATOR T NAZYWAETSQ PLOTNO ZADANNYM, ESLI LINEAL D(T ) PLOTEN W H .
lINEALY Ker T ff 2 D(T )j Tf = g I R(T ) fTf j f 2 D(T )g NAZYWA-
@TSQ SOOTWETSTWENNO QDROM I OBRAZOM OPERATORA T .
p R I M E R Y. 2. w GILXBERTOWOM PROSTRANSTWE H = L2[0; 1] OPREDELIM
OPERATOR M : (Mf )(t) tf (t) (0 t 1); M OPREDELEN WS@DU W H I
OGRANI^EN.
3. w GILXBERTOWOM PROSTRANSTWE H = L2(R) SNOWA POLOVIM (Mf )(t)
tf (t) (t 2 R), GDE D(M ) = ff 2 L2(R)j tf (t) 2 L2(R)g; M PLOTNOZ ZADAN, NO
n+1
NE OGRANI^EN: fn [n;n+1] 2 D(M ), kfnk = 1, NO kMfn k2 = n t2 dt >
n2 (n 2 N). oPERATORY W PRIMERAH 2,3 NAZYWA@TSQ OPERATORAMI UMNOVE-
NIQ NA NEZAWISIMU@ PEREMENNU@.
u P R A V N E N I Q. 4. pOKAVITE, ^TO T (f n) (nf n ) | NEOGRANI^ENNYJ
PLOTNO ZADANNYJ LINEJNYJ OPERATOR W `2 .
5. w GILXBERTOWOM PROSTRANSTWE L2 (R) POLOVIM (Tf )(t) = f 0 (t) (f 2
D(T ) D), GDE PROSTRANSTWO D OPREDELENO W 170.1. uBEDITESX, ^TO T |
NEOGRANI^ENNYJ PLOTNO ZADANNYJ LINEJNYJ OPERATOR.
6. aLGEBRAI^ESKIE OPERACII NAD LINEJNYMI OPERATORAMI W GILXBER-
TOWOM PROSTRANSTWE H OPREDELQ@TSQ SOGLA[ENIQMI:
D(A + B ) D(A) \ D(B ); (A + B )f Af + Bf ;
D(A) D(A); (A)f Af ( 2 C );
D(AB ) ff 2 D(B )j Bf 2 D(A)g; (AB )f A(Bf ):
427
Страницы
- « первая
- ‹ предыдущая
- …
- 425
- 426
- 427
- 428
- 429
- …
- следующая ›
- последняя »
