ВУЗ:
Составители:
Рубрика:
U | UNITARNYJ OPERATOR (!!).
eSLI T | PLOTNO ZADANNYJ OPERATOR W GILXBERTOWOM PROSTRANST-
WE H , TO ,(T ) = [U ,(T )]?.
fg; gg 2 ,(T ) TTOGDA hTf; gi , hf; gi = 0 (f 2 D(T )) TTOGDA
hU ff; Tf g; fg; ggi = hfTf; ,f g; fg; ggi = hTf; gi,hf; gi = 0 (f 2 D(T ))
TTOGDA fg; gg 2 [U ,(T )]?: >
4. uSTANOWIM SWOJSTWA SOPRQV ENNOGO OPERATORA:
(i) ESLI OPERATORY T; S PLOTNO ZADANY I S T , TO T S ,
(ii) ESLI T | PLOTNO ZADANNYJ OPERATOR, TO T ZAMKNUT.
(iii) PLOTNO ZADANNYJ OPERATOR T ZAMYKAEM TTOGDA T | PLOTNO ZA-
DAN. pRI \TOM T = T .
(iv) eSLI T PLOTNO ZADAN, TO H = Ker(T ) [R(T )],.
(i). S T ) (SM. 247.9) ,(S ) ,(T ) ) U ,(S ) U ,(T ) ) ,(S ) =
[U ,(S )]? [U ,(T )]? = ,(T ) ) S T .
(ii). sLEDUET NEMEDLENNO IZ P. 3.
(iii). oTMETIM, ^TO OPERATOR U IZ P. 3 UDOWLETWORQET RAWENSTWU
U 2 = ,I . sLEDOWATELXNO (SM. TAKVE 242.7),
,(T ), = ,(T )?? = [U 2,(T )]?? = [U (U ,(T ))?]? = [U ,(T )]?:
eSLI T PLOTNO ZADAN, TO W SILU (ii) IZ DANNOGO RAWENSTWA SLEDUET, ^TO
LINEAL ,(T ) = ,(T ), | GRAFIK OPERATORA T , TAK ^TO T = T . oBRATNO,
PUSTX T ZADAN NE PLOTNO. tOGDA NAJDETSQ g 2 D(T )? ; g 6= . tOGDA
fg; g 2 [,(T )]?, A ZNA^IT,
f; gg 2 U [,(T )? ] = [U ,(T )]? = ,(T ),:
|TO OZNA^AET, ^TO ,(T ), | NE GRAFIK, TO ESTX T NE ZAMYKAEM.
(iv). g 2 R(T )? TTOGDA hTf; gi = 0 = hf; i (f 2 D(T )) TTOGDA (SM. P.
1) g 2 D(T ); T g = TTOGDA g 2 Ker T : >
u P R A V N E N I Q. 5. pOKAVITE, ^TO W USLOWIQH P. 1 g 2 D(T )
TTOGDA LINEJNYJ FUNKCIONAL f ! hTf; gi, ZADANNYJ NA LINEALE D(T ),
OGRANI^EN.
431
Страницы
- « первая
- ‹ предыдущая
- …
- 429
- 430
- 431
- 432
- 433
- …
- следующая ›
- последняя »
