Основы вычислительной математики. Выпуск 5. Ширапов Д.Ш - 2 стр.

UptoLike

Рубрика: 

3
СОДЕРЖАНИЕ
Введение ………………………………………………………………4
1. Постановка задачи……………………………………………….4
2. Метод разложения в ряды…………………………………….6
3. Метод последовательных приближений………………………..7
4. Метод Эйлера……………………………………………………..9
5. Метод Рунге-Кутта………………………………………………11
6. Метод Адамса……………………………………………………12
7. Метод Милна…………………………………………………….14
8. Явная и неявная схемы аппроксимации задачи Коши………..15
9. Решение системы дифференциальных уравнений
первого порядка………………………………………………….16
10. Решение системы дифференциальных уравнений
высших порядков………………………………………………...19
11. Замечания об оценке погрешностей решений
дифференциальных уравнений………………………………….20
12. Задания для решения…………………………………………….21
Литература……………………………………………………………..25
4
Введение
Дифференциальные уравнения являются инструментом познания
мира и, как любой инструмент, они развиваются и совершенствуются.
«Познание мира» с помощью дифференциальных уравнений обычно со-
стоит из двух этапов:
1. Составление модели (дифференциального уравнения, описы-
вающего то или иное явление). Например,
=
2
2
2
2
dt
rd
,r,tF
dt
rd
m
второй закон Ньютона,
0
z
U
y
U
x
U
2
2
2
2
2
2
=
+
+
уравнение Лапласа,
)z,y,x(4
z
U
y
U
x
U
2
2
2
2
2
2
ρπ=
+
+
уравнение Пуассона.
2. Исследование с помощью получившейся модели и самой модели.
1. Постановка задачи
А. Простейшим обыкновенным дифференциальным уравнением (ОДУ)
является уравнение первого порядка
у = f (x, y ). (1.1)
Основная задача, относящаяся к этому уравнению, есть задача Ко-
ши:
Найти решение уравнения (1.1)
у = у (х) ,
удовлетворяющее начальному условию
у (х
0
) = у
0
. (1.2)
Другими словами, требуется найти интегральную кривую у=у(х), прохо-
дящую через заданную точку М
0
(х
0
, у
0
) (см. рис.1).
Б. Для дифференциального уравнения n-го порядка
y
(n)
= f ( x, y, y, …, y
(n-1)
)
задачи Коши состоит в нахождении решения
у = у (х),
удовлетворяющего начальным условиям
у (х
0
) = у
0
, у ( х
0
) = у
0
, …, y
(n-1)
( х
0
) =
)1n(
0
y
,
где х
0
, у
0
, у
0
, …,
)1n(
0
y
- заданные числа.