Аналитическая геометрия. Часть III. Многомерные пространства. Гиперповерхности второго порядка. Шурыгин В.В. - 31 стр.

UptoLike

Составители: 

y
α
= g
αβ
(x, a
β
),
(g
αβ
) g
αβ
y x E
m
y = pr
E
m
x
x E
n
E
m
= L{a
1
, . . . , a
m
}
x E
n
E
m
=
L{a
1
, . . . , a
m
}
x y x
E
m
x y
x u E
m
x E
3
= L{x, y, u}
y
z x
E
n
E
n
u
y
z
x
m E
n
dist (A, π
m
) A E
n
m
π
m
= {M
0
, E
m
}
A π
m
B π
m
AB
E
m
π
m
π
0
nm
=
{A, E
m
}
dist (A, π
m
) = |
AB|
C π
m
AC
2
= (
AB +
BC)
2
=
AB
2
+2(
AB,
BC)+
BC
2
=
3*‰*,0*  ,5.30:*3  :-“*7 +A7> ,5”D*,- /6*D2‡ˆ0: -+35E-:~
                            y α = g αβ (x, aβ ),
9D* (gαβ ) F :5730½5 -+357,58 :5730½* gαβ <
    ’3-*1½0‡ y B*17-35 x ,5 .-D.3-/735,/7B- Em +2D*: -+-E,5)57> /6*D2
‡ˆ0: -+35E-:~ y = prE x <
    Òڗ[ Y¡Zæ ›Y™š—X— ] W—ZWX—˜šXœ\˜š›—^
                       m



    VWXYZY[Y\]Y^ òxogd dmyn} kmvigfgd x ∈ E a egnefghifjbhikgd
Em = L{a1 , . . . , am } bjlckjmiht bjadmb‚¾au al
                                                  n
                                                   }xogkw g|fjl}mdcr kmvp
igfgd x ∈ En h kmvigfjdaw efabjnomyjqada egnefghifjbhik} Em =
L{a1 , . . . , am } €
    ³7-7 29-6 /-B.5D5*7 / 296-: :*“D2 B*17-3-: x 0 .3-*1½0*” y B*17-35 x
,5 .-D.3-/735,/7B-: Em < 68 D-15E57*6>/7B5 7-9-  )7- 29-6 :*“D2 x 0 y
:*,>‰* 2965 :*“D2 x 0 6‡+A: B*17-3-: u ∈ Em  ,*1-660,*53,A: B*17-32
               )
x  D-/757- ,- 35//:-73*7> 73*C:*3,-* .-D.3-/735,/7B- E3 = L{x, y, u} 
D68 1-7-3-9- ¨7-7 3*E26>757 2“* 0EB*/7*, <
                                                        x    z
              E⊥
               n

         z             x

                                                             y
                       y                           u

                               En
   Ȝ˜˜š—®\]Y —š š—«™] Z— m¯W[—˜™—˜š] › E ^
   VWXYZY[Y\]Y^ ójhhigtbamd dist (A, π ) ngi igsva A ∈ E ng m peoghp
vghia π = {M , E } bjlckjmiht bjadmb‚¾mm
                                      m
                                               al fjhhigtba
                                                            n
                                                              u gi igsva
  n      m
           v
A g igsm al πm €
               0   m


   2ˆ*/7B2*7 *D0,/7B*,,58 7-)15 B ∈ π 75158  )7- B*17-3 −   AB -37-9-
                                                                →
,56*, Em F ¨7- *D0,/7B*,,58 7-)15 .*3*/*)*,08 .6-/1-/7*” πm 0 πn−m
                                        m
                                                                   0
                                                                       =
     ⊥ < ’-15“*: )7-                       *”/7B07*6>,-   D68  6‡+-” D32
{A, Em }           dist (A, πm) = |AB| <
                                    −→
                                                        
      )
9-” 7- 10 C ∈ πm 0:**:~ −→2    −→ −−→ 2 −→2           −→ −−→ −−→2
                        AC = (AB + BC) = AB + 2(AB, BC) + BC =
                                    ´Õ