Аналитическая геометрия. Часть III. Многомерные пространства. Гиперповерхности второго порядка. Шурыгин В.В. - 65 стр.

UptoLike

Составители: 

E
n
w
E
n
ϕ x w
w ϕ
{e
i
}
E
n
ϕ
ϕ
ϕ
ϕ(v) = a
11
(v
1
)
2
+ a
22
(v
2
)
2
+ . . . + a
nn
(v
n
)
2
,
v
i
v
j
i 6= j
(68) ϕ
ϕ
E
n
a
11
a
22
. . . a
nn
ϕ
ϕ
ϕ
{e
i
} E
n
ϕ
ϕ(v) = a
ij
v
i
v
j
w
g
ij
w
i
x
j
= 0 a
ij
w
i
x
j
= 0
g
ij
w
i
x
j
= 0, a
ij
w
i
x
j
= 0
x
j
λ
a
ij
w
i
= λg
ij
w
i
j = 1, . . . , n
   #LPOQPNUOQùMNRSL USNQNúN PNQûëéT U OUéêLëNUNü TKKLMMNü
    PQNRSQTMRSUO En (
5/7-8ˆ0” .535935„ .-/B8ˆ*, 165//0„015½00 90.*3.-B*3C,-/7*” B7-3-9-
.-38D15 B *B160D-B-: 5„„0,,-: .3-/735,/7B* <
   VWXYZY[Y\]Y^ mb}omkgu kmvigf w k mkvoangkgd kmvigfbgd efghifjbp
hikm En bjlckjmiht kmvigfgd xojkbgxg bjefjkombat not vkjnfjiasbgu
`gfdc ϕ w mhoa khtvau kmvigf x w gfigxgbjo‚bcu kmvigf} w w hgeftymb
kmvigf} w gibghaimo‚bg `gfdc ϕ €
   VWXYZY[Y\]Y^ Ôfigbgfdafgkjbbcu |jlah {e } k mkvoangkgd kmvigfbgd
efghifjbhikm En bjlckjmiht vjbgbasmhvad not vkjnfjiasbgu `gfdc ϕ w
                                                         i


mhoa kmvigfc zigxg |jlahj hgeftymbc gibghaimo‚bg ϕ € ¹ vjbgbasmhvgd
|jlahm vkjnfjiasbjt `gfdj ϕ admmi kan
                ϕ(v) = a11 (v 1 )2 + a22 (v 2 )2 + . . . + ann (v n )2 ,   •·º‹
k vgigfgd gih}ihik}{i sombc h efgalkmnmbatda vivj efa i 6= j € ¹an
     v n          u                 v
(68) kj fjiasbg `gfdc ϕ ij ym bjlckjmiht jbgbasmh ad €
                                                           v             v
    Y—XYœ^  ot khtvgu vkjnfjiasbgu `gfdc ϕ k mkvoangkgd kmvigfbgd
efghifjbhikm En h}qmhik}mi vjbgbasmhvau |jlah€
   ägz``a†ambic a11 w a22 w . . . w ann k vjbgbasmhvgd kanm `gfdc ϕ h igsp
bghi‚{ ng emfmhijbgkgv bm ljkahti gi kc|gfj vjbgbasmhvgxg |jlahj€
   £—™œ¤œšY[¥˜š›—^ *17-3A 15,-,0)*/1-9- +5E0/5 D68 1B5D3570),-” „-3
:A ϕ 8B68‡7/8 B*17-35:0 965B,AC ,5.35B6*,0” D68 ¨7-” „-3:A  .-¨7-:2
D68 ,5C-“D*,08 15,-,0)*/1-9- +5E0/5 D68 „-3:A ϕ ,2“,- ,5”70 B*17-3A
965B,AC ,5.35B6*,0” < ’2/7> {ei} F .3-0EB-6>,A” +5E0/ B En  0 „-3:5 ϕ B
¨7-: +5E0/* 0:**7 B0D ϕ(v) = aij vivj < *17-3 w 8B68*7/8 B*17-3-: 965B,-
9- ,5.35B6*,08  */60 35B*,/7B- gij wixj = 0 B6*)*7 35B*,/7B- aij wixj = 0 <
  ¨7-: /62)5* /0/7*:5 DB2C 235B,*,0”
                          gij wi xj = 0,   aij wi xj = 0
-7,-/07*6>,- xj 0:**7 35,9 Š< ³7- B-E:-“,- 7-6>1- 7-9D5 1-9D5 ¨70 235B
,*,08 .3-.-3½0-,56>,A  7- */7> 1-9D5 ,5”D*7/8 751-* )0/6- λ  )7- BA.-6
,8‡7/8 /--7,-‰*,08 aij wi = λgij wi  j = 1, . . . , n < 7/‡D5 /6*D2*7 )7- 1-
                                     Ǽ