Аналитическая геометрия. Часть III. Многомерные пространства. Гиперповерхности второго порядка. Шурыгин В.В. - 68 стр.

UptoLike

Составители: 

{e
i
} E
n
det(a
ij
λδ
ij
) = 0.
(42)
a
ij
x
i
x
j
+ 2a
i n+1
x
i
+ a
n+1 n+1
= 0
Φ E
n
I(a
11
, . . . , a
n+1 n+1
)
E
n
1
2
I
n+1
= det(a
αβ
) α, β = 1, . . . , n + 1
a
α
0
β
0
= ep
α
α
0
ep
β
β
0
a
αβ
= det(a
α
0
β
0
) = det(a
αβ
)(det(ep
α
α
0
))
2
=
det(a
αβ
) det(p
i
j
)
2
= det(a
αβ
)
(p
i
j
)
det(p
i
j
) = ±1
3
λ
1
. . . λ
n
ϕ
4
λ
n
I
1
λ
n1
+ I
2
λ
n2
. . . + (1)
n
I
n
= 0.
I
1
, I
2
, . . . , I
n
1357,-/7*”‹ 0  /6*D-B57*6>,-  / 7-),-/7>‡ D- .*3*/75,-B-1 ,* E5B0/87 -7
BA+-35 15,-,0)*/1-9- +5E0/5< 
   ªœY«œ\]Y^ /60 +5E0/ {e } B E -37-,-3:03-B5,,A”  7- C53517*30/70
)*/1-* 235B,*,0* 0:**7 B0D i       n




                           det(a − λδ ) = 0.
                                       ij   ij
                                                                     •IŠ‹
   VWXYZY[Y\]Y^ Ôfigxgbjo‚bcd abkjfajbigd }fjkbmbat (42)
                      aij xi xj + 2ai n+1 xi + an+1 n+1 = 0
xaemfegkmfrbghia §pxg egftnvj Φ k mkvoangkgd efghifjbhikm En bjlckjp
miht khtvjt `}bv†at I(a11, . . . , an+1 n+1) gi vgz``a†ambigk zigxg }fjkbmp
batw lbjsmbam vgigfgu bm dmbtmiht efa ljdmbm gnbgxg gfigbgfdafgkjbp
bgxg fmemfj k En bj nf}xgu€
   VXš—Ú—\œ[¥\Y ]\›œX]œ\𐠿Xœ›\Y\]® ÊÙµÌ^
              „„                                       ²‹
   1◦ < /* 5 0,,A* 0,B5305,7A 235B,*,08 • G 8B68‡7/8 751“* 0 *9-
-37-9-,56>,A:0 0,B5305,75:0 <
   2◦ < In+1 = det(aαβ )  α, β = 1, . . . , n + 1  F -37-9-,56>,A” 0,B5305,7
235B,*,08 •²G‹<
   £—™œ¤œšY[¥˜š›—^ a = peα peβ a =⇒ det(a ) = det(a )(det(epα ))2 =
                                 .-/1-6>12           F  -37-9-,56>,58 :5730½5 0
                       0 0
                         αβ                          0 0
                               0α β αβ
                                   0                   αβ         αβ     0α
det(aαβ ) det(pj ) = det(aαβ ) 
               i 2                               i
                                               (pj )
/6*D-B57*6>,-  det(pij ) = ±1 < 
                                             )
   3◦ < -3,0 λ1  . . .  λn C53517*30/70 */1-9- 235B,*,08 •
                                                                  IH‹ 1B5D3570)
,-” „-3:A ϕ  5//-½003-B5,,-” / 235B,*,0*: •²G‹ 90.*3.-B*3C,-/70 G 9-
.-38D15 F -37-9-,56>,A* 0,B5305,7A 235B,*,08 ¨7-9- 235B,*,08 <
                                    IŠ‹                   )
   4◦ < 5/13AB58 -.3*D*607*6> •  C53517*30/70 */1-* 235B,*,0* :-“,-
.*3*.0/57> B B0D*~
                   λn − I1 λn−1 + I2 λn−2 − . . . + (−1)n In = 0.           •IG‹
  -¨„„0½0*,7A I1, I2, . . . , In C53517*30/70)*/1-9- 235B,*,08 •IG‹ F -37-
9-,56>,A* 0,B5305,7A 235B,*,08 •²G‹ 90.*3.-B*3C,-/70 G 9- .-38D15<
   ³7- /6*D2*7 0E -D,-E,5),-/70 .3*D/75B6*,08 C53517*30/70)*/1-9- 235B
,*,08 B B0D* •IG‹ 5 751“* 0E 7*-3*:A 0*75 D68 235B,*,08 •IG‹<
                                        ÇÎ