ВУЗ:
Составители:
Рубрика:
π
n−1
( ) P Q π
n−1
[P Q] π
n−1
: [P Q]∩π
n−1
= ∅
P Q
π
n−1
π
n−1
⊂ A
n
f : A
n
→ R f(M) = b
1
x
1
M
+ . . . + b
n
x
n
M
+ b
n+1
P Q π
n−1
sgn(f(P )) = sgn(f(Q))
f(M)
π
m
π
0
k
A
n
π
m
∩ π
0
k
6= ∅
π
m
= {M
0
, L
m
} π
0
k
= {M
0
0
, L
0
k
}
A
n
π
m
∩ π
0
k
3 A
π
m
∩ π
0
k
= {A, L
m
∩ L
0
k
}
B ∈ π
m
∩ π
0
k
⇐⇒
−→
AB ∈ L
m
, L
0
k
⇐⇒
−→
AB ∈ L
m
∩ L
0
k
π
m
= {M
0
, L
m
} π
0
k
= {M
0
0
, L
0
k
}
r = r
0
+ t
α
a
α
α = 1, . . . , m r =
r
0
0
+ u
a
b
a
a = 1, . . . , k M ∈ π
m
∩π
0
k
{t
α
} {u
a
} r
0
+ t
α
a
α
= r
0
0
+ u
a
b
a
M
t
α
a
α
− u
a
b
a
= r
0
0
− r
0
Á-3:26A  BAB-D87/8 751* 151 0 B /62)5* 50,,AC .3-/735/7B :5
6AC 35E:*3,-/7* /:< Ȉ  / < º<
   VWXYZY[Y\]Y^ }hi njbj xaemfeoghvghi π  Ä}nmd xgkgfaiw sig
nkm (fjloasbcm) igsva P a Q omyji eg gnb} higfgb}
                                               n−1
                                                        gi πn−1 w mhoa gip
fmlgv [P Q] bm hgnmfyai igsmvw efabjnomyjqar πn−1 : [P Q]∩πn−1 = ∅  ¹
efgiakbgd ho}sjm xgkgfadw sig igsva P a Q omyji eg fjlbcm higfgbc
gi πn−1 
   ªZ« ^ 2/7> 90.*3.6-/1-/7> π ⊂ A 0:**7 235B,*,0* º< .3*
D*60: 2,1½0 f : An → R -3:26- f (M ) = b1x1M + . . . + bnxnM + bn+1 <
                                       n−1   n
  -15E57>  )7- 7-)10 P 0 Q 6*57 .- -D,2 /7-3-,2 -7 πn−1 7-9D5 0 7-6>1-
7-9D5 1-9D5 sgn(f (P )) = sgn(f (Q)) < 510: -+35E-: 2 90.*3.6-/1-/70 B
50,,-: .3-/735,/7B* 0:**7/8 DB* /7-3-,A~ .- -D,2 /7-3-,2 90.*3.6-/
1-/70 2,1½08 f (M ) .30,0:5*7 .-6-07*6>,A* E,5)*,08  5 .- D3292 F
-730½57*6>,A* <
^µ Ť]\Y XW[¡Y\]Y W[Y°  ]\\ WXX\Y^
2/7> E5D5,A DB* .6-/1-/70 πm 0 πk0 B 50,,-/ .3-/735,/7B* An < 5/
/:-730: B-E:-,A* /62)50 0C BE50:,-9- 35/.-6-*,08 <
    ^ π ∩ π0 6= ∅ <
    XYZ[¡Y\]Y^        Æhoa eoghvghia πm = {M0, Lm} a πk0 = {M00 , L0k } k efgp
        m       k
hifjbhikm An adm{i bme}higm emfmhmsmbamw ig gba emfmhmvj{iht eg
eoghvghia _ admbbgw mhoa πm ∩ πk0 3 A w ig πm ∩ πk0 = {A, Lm ∩ L0k } 
    £¤Y[¥^ */7B07*6>,-  B ∈ π ∩ π0 ⇐⇒ −             →
                                                              AB ∈ Lm , L0k ⇐⇒
                                                   m     k
AB ∈ Lm ∩ L0k < 
−→
    2/7> .6-/1-/70 πm = {M0, Lm} 0 πk0 = {M00 , L0k } E5D5,A  /--7B*7/7B*,
,-  .535:*730)*/10:0 235B,*,08:0 r = r0 + tαaα  α = 1, . . . , m  0 r =
                                                        )
r00 + ua ba  a = 1, . . . , k < 5D02/ B*17-3 B/81- 7- 10 M ∈ πm ∩ πk0 0:**7 DB5
,5+-35 B,273*,,0C 1--3D0,57 {tα} 0 {ua} < 30 ¨7-: r0 + tαaα = r00 + uaba <
7/D5 /6*D2*7 )7- B,273*,,0* 1--3D0,57A 7-)10 M 2D-B6*7B-387 B*1
7-3,-:2 235B,*,0
                                α  tα a − ua b = r0 − r
                                        a     0    0
                                                                              G
                                        Ç
Страницы
- « первая
 - ‹ предыдущая
 - …
 - 5
 - 6
 - 7
 - 8
 - 9
 - …
 - следующая ›
 - последняя »
 
