Аналитическая геометрия. Часть III. Многомерные пространства. Гиперповерхности второго порядка. Шурыгин В.В. - 73 стр.

UptoLike

Составители: 

λ
1
= 9 (5 9)w
1
+ 6w
2
= 0
λ
1
= 9
w
1
= {3; 2}
w
1
π/2
w
2
= {−2; 3}
(a
αβ
)
5x + 6y 11 = 0 6x 6 = 0
x
C
= 1 y
C
= 1
x = ˆx + 1
y = ˆy + 1 5(x
0
+ 1)
2
+ 12(x
0
+ 1)(y
0
+ 1) 22(x
0
+ 1)
12(y
0
+ 1) 19 = 0
5ˆx
2
+ 12ˆxˆy 36 = 0.
e
1
0
=
3
13
e
1
+
2
13
e
2
e
2
0
=
2
13
e
1
+
3
13
e
2
ˆx =
3
13
x
0
2
13
y
0
ˆy =
2
13
x
0
+
3
13
y
0
5
13
(3x
0
2y
0
)
2
12
13
(3x
0
2y
0
)(2x
0
+ 3y
0
) 36 = 0
9(x
0
)
2
4(y
0
)
2
= 36
x
2
4
y
2
9
= 1.
I
3
= det(a
αβ
) = 36
2
I
2
= det(a
ij
) = 36
{O; x, y}
x
2
2xy + y
2
10x 6y + 25 = 0.
’30 λ1 = 9 ¨75 /0/7*:5 .3*D/75B68*7 /-+-” 235B,*,0* (5 − 9)w1 + 6w2 = 0 <
’-¨7-:2 B*17-3 965B,-9- ,5.35B6*,08  /--7B*7/7B2‡ˆ0” 1-3,‡ λ1 = 9 
0:**7 B0D w1 = {3; 2} < 7-3-” 965B,A” B*17-3 :-“,- ,5”70 5,56-90),A:
-+35E-: ,- :-“,- .3-/7- .-B*3,27> B*17-3 w1 ,5 29-6 π/2 < 3*E26>757*
.-62)5*: w2 = {−2; 3} <
      *,73 130B-” ,5C-D07/8 0E /0/7*:A 235B,*,0” •¶²‹ :5730½5 1-7-3-”
-+35E-B5,5 DB2:8 .*3BA:0 /73-15:0 :5730½A (aαβ ) < 751  ½*,73 ,5C-D07
/8 0E /0/7*:A 235B,*,0” 5x + 6y − 11 = 0  6x − 6 = 0 0 0:**7 1--3D0,57A
                                    )
xC = 1  yC = 1 < ’*3*,*/*: ,5 56- 1--3D0,57 B ½*,73 < 68 ¨7-9- .-D/75
B0: B 235B,*,0* 130B-” „-3:26A .3*-+35E-B5,08 1--3D0,57~ x = x̂ + 1 
                    )
y = ŷ + 1 < ’-62 5*: 235B,*,0* 5(x0 + 1)2 + 12(x0 + 1)(y 0 + 1) − 22(x0 + 1) −
                                                                )
12(y 0 + 1) − 19 = 0  1-7-3-* .-/6* .30B*D*,08 .-D-+,AC 6*,-B .30,0:5*7
B0D
                              5x̂2 + 12x̂ŷ − 36 = 0.                            •I¶‹
  A+*3*: 7*.*3> B 15)*/7B* ,-BAC +5E0/,AC B*17-3-B *D0,0),A* B*17-3A
965B,AC ,5.35B6*,0” e1 = √3 e1 + √2 e2  e2 = − √2 e1 + √3 e2 < ³7-” E5:*,*
+5E0/5 /--7B*7/7B2*7 .3*-+35E-B5,0*           1--3D0,57 x̂13 = √313x0 − √2 y0  ŷ =
                           0                     0
                                 13      13


√2 x0 + √3 y 0 < ’-D/75B688 ¨70 .3*-+35E-B5,08 B 235B,*,0* •
                                                                13    I¶‹13.-62)0:
235B,*,0*
  13        13
                                                                     1-7-3-* .-/6*
              13 (3x − 2y ) − 13 (3x − 2y )(2x + 3y ) − 36 = 0 
               5    0    0 2  12      0     0    0    0
.30B*D*,08 .-D-+,AC )6*,-B .30,0:5*7 B0D 9(x0)2 − 4(y0)2 = 36 < 751 
15,-,0)*/1-* 235B,*,0* 130B-” 0:**7 B0D
                                   x2 y 2
                                     −    = 1.
                                   4   9
³7- “* 235B,*,0* .-62)5*7/8 .30 0/.-6>E-B5,00 „-3:26A •I±‹< D5,,-:
/62)5* I3 = det(aαβ ) = 362  5 I2 = det(aij ) = −36 <
   ªœZœ«œ –Þ^ 5 *B160D-B-” .6-/1-/70 B .38:-29-6>,-” /0/7*:* 1--3D0
,57 {O; x, y} E5D5,5 130B58 B7-3-9- .-38D15 235B,*,0*:
                      x2 − 2xy + y 2 − 10x − 6y + 25 = 0.
5”70 15,-,0)*/1-* 235B,*,0* ¨7-” 130B-” 0 15,-,0)*/12‡ /0/7*:2 1--3
D0,57<

                                         Ω