Аналитическая геометрия. Часть III. Многомерные пространства. Гиперповерхности второго порядка. Шурыгин В.В. - 87 стр.

UptoLike

Составители: 

eϕ : P
n
P
n
P
n
P
n
= A
n
P
n1
(π
0
)
eϕ|A
n
: A
n
P
n
eϕ
A
n
P
n
[e
α
] A
n
x
n+1
6= 0
A
n
π V
n+1
x
n+1
= 1 X
i
= x
i
/x
n+1
Y
i
= y
i
/y
n+1
Y
i
=
y
i
y
n+1
=
ϕ
i
α
x
α
ϕ
n+1
β
x
β
=
ϕ
i
α
x
α
x
n+1
ϕ
n+1
β
x
β
x
n+1
=
ϕ
i
j
X
j
+ ϕ
i
n+1
ϕ
n+1
k
X
k
+ ϕ
n+1
n+1
.
Y
i
=
a
i
1
X
1
+ . . . + a
i
n
X
n
+ a
i
n+1
b
1
X
1
+ . . . + b
n
X
n
+ b
n+1
.
eϕ|A
n
: A
n
P
n
π A
n
b
1
X
1
+ . . . + b
n
X
n
+ b
n+1
= 0
A
n
A
n
eϕ :
P
n
P
n
P
n1
A
n
= P
n
\P
n1
-7,-‰*,0* )*7A3*C 7-)*1 .38:-” ,5EAB5‡7 ghbgkbcd abkjfajbigd efgp
mviakbgu xmgdmifaa<
Ý^ß ŽX—Y™š]›\Y WXY—­Xœ¤—›œ\]® › œ]\\—° ™œXšY^
 5//:-730: .3-0EB-6>,-* .3-*170B,-* .3*-+35E-B5,0* ϕe : Pn → Pn 0
.3*D/75B6*,0* •I»‹ .3-/735,/7B5 Pn B B0D* -+Ö*D0,*,08 5„„0,,-9- .3-
/735,/7B5 0 ,*/-+/7B*,,-” 90.*3.6-/1-/70 Pn = An ∪ Pn−1(π0)  /--7B*7
/7B2‡ˆ** ,*1-7-3-” 5„„0,,-” 1537* •Iº‹< A8/,0: 1510:0 235B,*,08
:0 E5D5*7/8 -935,0)*,0* ϕ|A e n : An → Pn .3*-+35E-B5,08 ϕ
                                                                „„
                                                           e B 5 0,,AC
•,*-D,-3-D,AC‹ 1--3D0,575C B .3-/735,/7B* An < 751  B Pn 35//:5730B5*:
3*.*3 [eα]  .- -7,-‰*,0‡ 1 1-7-3-:2 An -.3*D*68*7/8 2/6-B0*: xn+1 6= 0
•An :-“,- -7-“D/7B07> / 90.*3.6-/1-/7>‡ π ⊂ Vn+1  0:*‡ˆ*” 235B,*,0*
           ‹  º·‹
xn+1 = 1 < E •  .*3*C-D8 1 ,*-D,-3-D,A: 1--3D0,575: X i = xi /xn+1 0
                       )
Y i = y i /y n+1  .-62 5*:
                                     ϕiα xα
            Yi =
                    yi       ϕiα xα  x n+1   ϕij X j + ϕin+1
                           = n+1 β = n+1 β = n+1 k            .       •»Š‹
                   y n+1    ϕβ x    ϕβ x    ϕk X + ϕn+1   n+1
                                            xn+1
 510: -+35E-: B 5„„0,,AC 1--3D0,575C .3-*170B,A* .3*-+35E-B5,08 E5
D5‡7/8 D3-+,- 60,*”,A:0 „2,1½08:0 B0D5
                           i
                         Y =
                             ai1 X 1 + . . . + ain X n + ain+1
                                                               .      •»G‹
                             b1 X 1 + . . . + bn X n + bn+1
  35B,*,08:0 •»G‹ E5D5*7/8 -7-+35“*,0* ϕ|Ae n : An → Pn < ’30 ¨7-: 90
.*3.6-/1-/7> π ⊂ An  0:*‡ˆ58 235B,*,0* b1X 1 + . . . + bnX n + bn+1 = 0 
-7-+35“5*7/8 B ,*/-+/7B*,,2‡ 90.*3.6-/1-/7> < ’-¨7-:2 .3-*170B,A* .3*
-+35E-B5,08 :-“,- 35//:5730B57> 0 B 5„„0,,-: .3-/735,/7B* An  ,- -+
65/7> -.3*D*6*,08 ¨70C .3*-+35E-B5,0” :-“*7 ,* /-B.5D57> /- B/*: .3-
/735,/7B-: An <
    A8/,0: 7*.*3>  151-” B0D 0:*‡7 .3-*170B,A* .3*-+35E-B5,08 ϕe :
Pn → Pn  .30 1-7-3AC ,*/-+/7B*,,58 90.*3.6-/1-/7> Pn−1 -7-+35“5*7/8
,5 /*+8 < ’30 ¨7-: -)*B0D,- 0 5„„0,,-* .3-/735,/7B- An = Pn \ Pn−1 +2
D*7 -7-+35“57>/8 ,5 /*+8 < */-+/7B*,,58 90.*3.6-/1-/7> 0:**7 235B,*,0*
                                    ÏÇ