Аналитическая геометрия. Часть III. Многомерные пространства. Гиперповерхности второго порядка. Шурыгин В.В. - 89 стр.

UptoLike

Составители: 

n
P
n
= (P
n
, V
n+1
, p) (P
C
n
, ν, eν)
(P
C
n
, V
C
n+1
, p
C
)
ν : V
n+1
V
C
n+1
eν : P
n
P
C
n
(V
C
n+1
, ν)
V
n+1
V
n+1
\ {0}
ν
//
p
V
C
n+1
\ {0}
p
C
P
n
eν
//
P
C
n
P
n
ν(P
n
) P
C
n
P
n
P
C
n
p
C
P
C
n
= V
C
n+1
\{0}/
(V
C
n+1
, ν)
V
n+1
P
n
v w v = λw
p
C
: v 7→ [v] [v] v
eν
eν(A) = [ν(a)] A = p(a)
P
n
P
n
(C)
P
n
(C) = A
2n
A
2(n1)
A
2(n2)
. . . A
0
.
 /1-6>1- 7-)*1 B ¨7-: .3-/735,/7B* 0 ,5”70 B/* .38:A* 0 B/* .6-/1-/70
 ¨7-9- .3-/735,/7B5<
    VWXYZY[Y\]Y^ ägdeomvha`avj†amu n pdmfbgxg kmqmhikmbbgxg efgmviakp
 bgxg efghifjbhikj Pn = (Pn, Vn+1, p) bjlckjmiht bj|gf (PnC, ν, νe) w hghigp
 tqau al vgdeomvhbgxg efgmviakbgxg efghifjbhikj (PnC, Vn+1   C
                                                                 , pC ) w oap
 bmubgxg gig|fjymbat ν : Vn+1 → Vn+1  C      a abömviakbgxg gig|fjymbat
                  v
νe : Pn → PnC ij arw sig ejfj (Vn+1 C                 v      v v u
                                       , ν) tkotmiht gdeom ha`a j†am
 jhhg†aafgkjbbgxg kmvigfbgxg efghifjbhikj Vn+1 a vgdd}ijiakbj homp
 n}{qjt najxfjddj¿
                     Vn+1 \ {0}     ν     / VC \ {0}                     •»²‹
                                             n+1

                          p                           pC

                                                 
                                     νe
                          Pn                 /   PnC
      žfa zigd ahrgnbgm efgmviakbgm efghifjbhikg Pn gigynmhikotmiht
 h mxg g|fjlgd ν(Pn) ⊂ PnC €
      ’-/73-07> 1-:.6*1/0„015½0‡ .3-*170B,-9- .3-/735,/7B5 Pn :-“,- 
 ,5.30:*3  /6*D2‡ˆ0: -+35E-:< .3*D*60: PnC 0 pC 151 B .30:*3* Š ,5
 / < I¶ .-65958 PnC = Vn+1
                         C
                            \ {0}/ ∼  9D* (Vn+1
                                             C                     „
                                                 , ν) F 1-:.6*1/0 015½08 B*1
 7-3,-9- .3-/735,/7B5 Vn+1  5//-½003-B5,,-9- / Pn  v ∼ w ⇐⇒ v = λw  5
                                                                     
pC : v 7→ [v]  9D* [v] F 165// B*17-3-B  ¨1B0B56*,7,AC B*17-32 v < 7-+35
 “*,0* νe E5:A15‡ˆ** D05935::2 •»²‹ .30 ¨7-: -.3*D*607/8 /--7,-‰*,0*:
νe(A) = [ν(a)]  9D* A = p(a) <
      ’*3*C-D 1 1-:.6*1/0„015½00 .-EB-68*7 /)0757>  )7- 1--3D0,57A 7-)*1
 .3-/735,/7B5 Pn :-927 .30,0:57> ,* 7-6>1- B*ˆ*/7B*,,A*  ,- 0 1-:.6*1/
 ,A* E,5)*,08 <
      ªœY«œ\]Y^ 5//:5730B58 5„„0,,A* 1537A  D68 1-:.6*1/,-9- .3-*1
 70B,-9- .3-/735,/7B5 Pn(C) :-“,- .-62)07> .3*D/75B6*,08 5,56-90),A*
 •I»‹ 0 •ºH‹< ’*3*C-D8 B /--7B*7/7B2‡ˆ*: .3*D/75B6*,00 •ºH‹ 1 -B*ˆ*/7B
 6*,08: 1-:.6*1/,AC 5„„0,,AC .3-/735,/7B  .-62)0: /6*D2‡ˆ** .3*D
 /75B6*,0* 1-:.6*1/,-9- .3-*170B,-9- .3-/735,/7B5 151 •D0Eև,17,-9-‹
 -+Ö*D0,*,08 B*ˆ*/7B*,,AC 5„„0,,AC .3-/735,/7B~
                   Pn (C) = A2n ∪ A2(n−1) ∪ A2(n−2) ∪ . . . ∪ A0 .       •»¶‹
                                        ÏÏ