Аналитическая геометрия. Часть III. Многомерные пространства. Гиперповерхности второго порядка. Шурыгин В.В. - 88 стр.

UptoLike

Составители: 

x
n+1
= 0 x
n+1
= 0 y
n+1
= 0
x
1
, . . . , x
n
y
n+1
= ϕ
n+1
1
x
1
+. . .+ϕ
n+1
n
x
n
+ϕ
n+1
n+1
x
n+1
ϕ
n+1
1
= ϕ
n+1
2
= . . . = ϕ
n+1
n
= 0
ϕ
n+1
n+1
6= 0 ϕ
Y
i
= a
i
1
X
1
+ . . . + a
i
n
X
n
+ a
i
n+1
, a
i
α
=
ϕ
i
α
ϕ
n+1
n+1
.
eϕ : P
n
P
n
P
n1
A
n
= P
n
\P
n1
R
F F = C
n
C (P
n
(C), V
n+1
(C), p)
P
n
(C) V
n+1
(C)
n + 1 C
p : V
n+1
(C) \ {0} P
n
(C)
p(v) = p(w) v = λw λ C
(P
n
(C), V
n+1
(C), p)
P
n
(C)
P
3
(F
2
)
F
2
                                        º·‹
xn+1 = 0  .-¨7-:2 B 235B,*,08C • 0E xn+1 = 0 D-6“,- /6*D-B57> y n+1 = 0
•.30 6‡+AC x1, . . . , xn ‹< ’-/1-6>12 yn+1 = ϕn+1   1        n+1 n  n+1 n+1
                                               1 x + . . . + ϕn x + ϕn+1 x   
¨7- B-E:-“,- 7-6>1- .30 ϕn+1        = ϕn+1  = . . . = ϕn+1
                                                                           )
                                                           = 0 < ¨7-: /62 5*
            •0,5)* -7-+35“*,0* ϕ +2D*7 BA3-“D*,,A:‹ 0 235B,*,08 •»Š‹
                                 1      2              n
ϕn+1
 n+1 6= 0
.30,0:5‡7 B0D
              i
            Y =   ai1 X 1   + ... +   ain X n   +   ain+1 ,   9D*   aiα
                                                                            ϕiα
                                                                          = n+1 .
                                                                           ϕn+1
@A D-15E560 /6*D2‡ˆ** .3*D6-“*,0* <
   ŽXYZ[—¡Y\]Y^ Æhoa efgmviakbgm efmg|fjlgkjbam ϕe : P → P gig|fjp
                                v
yjmi bmhg|hikmbb}{ xaemfeogh ghi‚ Pn−1 bj hm|tw ig mxg gxfjbasmbam
                                                       n     n


bj j``abbgm efghifjbhikg An = Pn \ Pn−1 tkotmiht j``abbcd efmg|fjp
lgkjbamd zigxg efghifjbhikj€
   7/‡D5 /6*D2*7 )7- 9*-:*7308 .3-*170B,-9- .3-/735,/7B5 / 932..-”
.3*-+35E-B5,0”  .*3*B-D8ˆ0C B /*+8 ,*1-7-32‡ „01/03-B5,,2‡ 90.*3.6-/
1-/7>  8B68*7/8 5„„0,,-” 9*-:*730*” <
Ý^–à ᗏW[Y™˜]]™œâ]® ›YãY˜š›Y\\× WX—Y™š]›\× WX—˜šXœ\˜š›^
 51 “* 151 0 B /62)5* B*17-3,-9- 0 5„„0,,-9- .3-/735,/7B  B -.3*D*6*,00
.3-*170B,-9- .3-/735,/7B5 •/ < I²‹ .-6* B*ˆ*/7B*,,AC )0/*6 R :-“,- E5
:*,07> ,5 6‡+-* D329-* .-6* F < )5/7,-/70  B /62)5* F = C 0:**7 :*/7-
/6*D2‡ˆ** -.3*D*6*,0* <
   VWXYZY[Y\]Y^ žfgmviakbcd efghifjbhikgd fjldmfbghia n bjn egomd
vgdeomvhbcr sahmo C bjlckjmiht ifguvj (P (C), V (C), p) w hghigtqjt
al bmvgigfgxg dbgymhikj Pn(C) w kmvigfbgxg efghifjbhikj Vn+1(C) fjlp
                                              n       n+1


dmfbghia n + 1 bjn egomd C a h{fömviakbgxg gig|fjymbat
                        p : Vn+1 (C) \ {0} → Pn (C)                    •»±‹
ijvgxgw sig p(v) = p(w) ⇐⇒ v = λw not bmvgigfgxg λ ∈ C €
     68 -+-E,5)*,08 .3-*170B,-9- .3-/735,/7B5 (Pn(C), Vn+1(C), p) 0,-
9D5 +2D*: 0/.-6>E-B57> -D0, /0:B-6 Pn(C) <
   ªœZœ«œ µË^ ’3-*170B,-* .3-/735,/7B- P (F ) 35E:*3,-/70 ± ,5D .-6*:
F2 -/7571-B -7  D*6*,08 ,5  G /-/7-07 0E 1-,*
                                            3
                                              ) ,-9-
                                                 2
                                                     )0/65 7-)*1 < A8/,07> 
                                     ÏÎ