Аналитическая геометрия. Часть II. Аналитическая геометрия пространства. Шурыгин В.В. - 26 стр.

UptoLike

Составители: 

(g
ij
)
(g
ij
) =
1
1
2
1
2
1
2
1
1
2
1
2
1
2
1
.
ε
123
=
p
det (g
ij
) =
2
2
V
P (a,b,c)
=
2
2
1 1 0
0 1 1
1 0 1
=
2.
(a, b) = a
1
b
1
+ a
2
b
2
+ a
3
b
3
+
1
2
(a
1
b
2
+
a
1
b
3
+ a
2
b
1
+ a
2
b
3
+ a
3
b
1
+ a
3
b
2
)
G(a, b, c) =
(a, a) (a, b) (a, c)
(b, a) (b, b) (b, c)
(c, a) (c, b) (c, c)
=
3
5
2
5
2
5
2
3
5
2
5
2
5
2
3
,
V
P (a,b,c)
=
p
det G(a, b, c) =
2
1093
E
3
Oxyz
{O; i, j, k} S
O
x
2
+ y
2
+ z
2
= 1 r
2
= 1.
A, B, C S
π
A B C ABC
  %fžfMLf' dæJ¡ prhphm' ‹02‡0 -.013++ ,+:9)C)3 (g ) 9 0-B
-40290)4+4 *0:-) 4))2 9C~
                                                          ij


                                                      
                                               1   1
                                           1   2   2
                                          1       1   
                            (gij ) =      2   1   2   .
                                           1   1
                                           2   2   1
?+†2+4 ε = p det (g ) = √2  +C0
         123        ij             2

                                       √1 1 0
                                      2        √
                      VP (a,b,c)   =    0 1 1 = 2.
                                     2
                                        1 0 1
   ™æh¡ prhphm' ?+17:3-7 F+41+D (a, b) = a1b1 + a2b2 + a3b3 + 1 (a1b2 +
                           3 2 O 0E+C4 402‡
                                                                 2
 1 3    2 1   2 3   3 1
a b +a b +a b +a b +a b )
                                                         
                           (a, a) (a, b) (a, c)     3 52 52
                                                         
          G(a, b, c) =  (b, a) (b, b) (b, c)  =  52 3 52  ,
                                                     5 5
                           (c, a) (c, b) (c, c)      2 2 3

0 :02)4  VP (a,b,c) = p det G(a, b, c) = √2 
   %fjhlfMiHfln© ŸLqfInqHIn¢ ªˆ« O 1  
   ‚ninƒL L HrIn¯MfML©¢ ª<« O €<<Š O €<<—O €<<›O €<O €<<¨O €<ˆ=O €<ˆŠ O €=¨