Аналитическая геометрия. Часть II. Аналитическая геометрия пространства. Шурыгин В.В. - 35 стр.

UptoLike

Составители: 

e
i
0
= p
i
i
0
e
i
V
n
e
w
w
i
0
= p
i
i
0
w
i
= p
1
i
0
w
1
+ p
2
i
0
w
2
+ . . . + p
n
i
0
w
n
, w
i
= p
i
0
i
w
i
0
.
e
w
w
i
0
=
e
w(e
i
0
) =
e
w(p
i
i
0
e
i
) = p
i
i
0
e
w(e
i
) = p
i
i
0
w
i
.
(w
1
0
w
2
0
. . . w
n
0
) = (w
1
w
2
. . . w
n
)
p
1
1
0
p
1
2
0
. . . p
1
n
0
p
2
1
0
p
2
2
0
. . . p
2
n
0
p
n
1
0
p
n
2
0
. . . p
n
n
0
.
L
m
V
n
S
V
n
L(S)
V
n
S
L(S) = {a V
n
|a = λ
1
b
1
+ λ
2
b
2
+ . . . + λ
k
b
k
},
λ
1
, . . . , λ
k
R b
1
, . . . , b
k
S k
L(S) V
n
L(S)
S
S
S
V
n
V
n
S
Ann (S) = {
e
w V
n
|
e
w(a) = 0 a S}.
°' eIfhmInohknMLf jhhIiLMnq ŸLMf¡Mh¡ šhIlJ '
? :04)) *0:-0 e = pi e 9 V .++C02 1)D+D F+4 we ,)+*B
0:A2-3 -1)CA 4 +*0:+4~
                     i  0
                            i i  0   n


                                                                                   
                    0        0           0            0
                                                                        0
           wi = pii wi = p1i w1 + p2i w2 + . . . + pni wn , wi = pii wi .
               0                                                            0  Š—
  13 C+.0:02)17-290 †2++ s+ 9(-127 :0()3 F+4 we 0 9).2+B
0E +9++ *0:-0~ wi = w(e
                          e i ) = w(p
                                                                             (
                                                       e i ) = pii wi . 402 +4
                                      e ii ei ) = pii w(e
9C) F+41 Š— 913C32 -1)CA 4 +*0:+4~
                        0            0            0   0             0



                                                                              
    (w10 w20 . . . wn0 ) = (w1 w2 . . . wn )            p110 p120 . . . p1n0
                                                       2 2                    
                                                                                        
                                                                                    Š›
                                                       p10 p20 .. . p2n 0 
                                                        
                                                      
                                                                           .
                                                                              
                                                          n    n          n
                                                        p10 p20 . . . pn0
0.+ ,)+*0:+903 Š— 0:90)2-3 ´|}vxv{u{yzO 0 :0.+ ,)+*0:+B
903 ˆ ´|{uxv}vxv{u{yz ?+†2+4 1)D) F+4 0:90A2 20.s)
´|}´u|xvz
°'° MMHŸ©qhI rhirIhpqInMpqkn L ⊂ V '
                                 m    n
#rIfifŸfMLf' ÁtuÅ S Æ {´|u|x| ‘|³z{|Àtu}| } }´u|x{|z ‘x|tuw
              É
xv{tu} Vn  ê{{| |’|¹|Ò´| L(S) ¸u|•| ‘|³z{|Àtu}v {v“y}vut”
z{|Àtu}| }´u|x|} “ Vn º ‘x³tuv}zy¼ } }³ ¹{{y¼ ´|z’{vŽ
}´u|x|} “ S º u| tuÅ~
              L(S) = {a ∈ Vn | a = λ1 b1 + λ2 b2 + . . . + λk bk },
•³ λ1, . . . , λk ∈ R º b1, . . . , bk ∈ S º k Æ ‘x|“}|¹Å{| {vuÁxv¹Å{| ҍt¹|
   ()9C+O L(S) ; ,+C,+-20-29+ 9 V O  L(S) ; 04)7@)) ,+C,+B
-20-29+O -+C)s0 )) ,+C4+s)-29+ S O 2+ )-27 ,+C,+-20-29+O -+C)B
                                                   n


s0 ))-3 9+ 9-3.+4 ,+C,+-20-29)O -+C)s0 )4 ,+C4+s)-29+ S 
   #rIfifŸfMLf' ÁtuÅ S Æ {´|u|x| ‘|³z{|Àtu}| } }´u|x{|z ‘x|w
                      É
tuxv{tu} Vn  Ç{{Á¹”u|x|z ¸u|•| ‘|³z{|Àtu}v {v“y}vut” ‘|³z{|w
Àtu}| } t|‘x”À{{|z ‘x|tuxv{tu} Vn∗ º t|tu|”» “ ¹{{y¼ È|xzº
‘x{zvÄ»¼ “{vҏ{ {Á¹Å {v }t¼ }´u|xv¼ “ S ~
                              e ∈ Vn∗ | w(a)
                   Ann (S) = {w         e    = 0 ∀a ∈ S}.
                                             Œœ