Введение в теорию групп. Задачи и теоремы. Часть 2. Тронин С.Н. - 42 стр.

UptoLike

Составители: 

Рубрика: 

 6.29.   dANA GRUPPA G S \LEMENTAMI
  1 R R  R  S S  S  SR SR  SR  S R S R  S R  S R S R  S R 
         2   3           2           3               2       3    2       2       2       2   3       3       3   2   3   3



KOTORYE UDOWLETWORQ@T SLEDU@]IM SOOTNOENIQM:
                    R = S = 1 RS = S R  R S = S R:
                                 4           4                    3   3       3               3



wY^ISLITX W QWNOM WIDE WSE RAZLI^NYE ODNOMERNYE PREDSTAWLENIQ GRUP-
PY G .
 6.30.   dANA GRUPPA G S \LEMENTAMI
         1 R S T RS RT TR SR ST TS A A  A  B C D                      2       3



KOTORYE UDOWLETWORQ@T SLEDU@]IM SOOTNOENIQM:
         R = S = T = 1 RST = TRS = STR (RST ) = 1
             2       2                   2                                                            4

                TRT = SRS RTR = STS TST = RSR
               A = RST B = TRT C = RTR D = TST:
wY^ISLITX W QWNOM WIDE WSE RAZLI^NYE ODNOMERNYE PREDSTAWLENIQ GRUP-
PY G .
 6.31.   dANA GRUPPA G S \LEMENTAMI
      1 S S  S  S  S  S  S  T ST S T S T S T S T S T S T
             2   3           4           5   6   7                2       3           4           5       6       7



KOTORYE UDOWLETWORQ@T SLEDU@]IM SOOTNOENIQM:
                S = T = 1 S = T  TS = S T ST = TS :
                 8                   4           4       2                7                           7



wY^ISLITX W QWNOM WIDE WSE RAZLI^NYE ODNOMERNYE PREDSTAWLENIQ GRUP-
PY G .


                                                             42