Аналитическая геометрия и линейная алгебра. Умнов А.Е. - 175 стр.

UptoLike

Составители: 

Рубрика: 

cÈÏ Ëã
179
ÒÓˮӺË¹¯º°¯ÈÓ°mº
vã˰mÒË

°m
n
Λ
ÏÈÈÓÈÏÒ°
},...,,{
21
n
ggg
m}ºº¯ºä}ºº¯ÒÓÈÓºË¹¯Ë
°ÈmãËÓÒË ªãËäËÓºm ÒäËË
=
=
n
i
ii
gx
1
ξ

ºÈ }ÈÎÈ«°ºmä˰ÓÈ«
Ó˺Ӻ¯ºÓÈ«ãÒÓË®ÓÈ«°Ò°ËäÈ
m
ãÒÓˮө²¯ÈmÓËÓÒ®°
n
ÓËÒÏm˰
Ó©äÒ
=
==
n
i
jiji
mj
1
],1[,
β
ξ
α
º¹¯ËËã«ËÓË}ºº¯ҹ˯¹ãº°}º°
Γ
m
n
Λ
iº}ÈÏÈËã°mº
kÓÈãºÒÓº¯È°°ÎËÓÒ«ä¹¯ÒmËËÓÓ©äã«°ã˰mÒ«
ÈÈ

Íévknéqz·zvësnuntz
321
,,
ggg
viéjoyízijoqxk
3
Λ
qtjpzqrvvé
lqtjztvn wénlxzjksntqnësnuntzj
x
këzvu ijoqxn nxsqk tnrvzvévu
qx}vltvuijoqxn
x
=
1
3
1

1
1
1
1
=
g

g
2
2
1
0
=
q
g
3
3
0
1
=
ËÓÒË
°
 iã«ººº©ÒÏªãËäËÓºm
321
,,
ggg
äºÎÓº©ãºº¯ÈϺmÈm
3
Λ
ÈÏÒ° Ó˺²ºÒäº Ò º°ÈºÓº º¹¯ËËãËÓÒË  º© ªÒ
ªãËäËÓ©©ãÒãÒÓˮӺÓËÏÈmÒ°Òä©äÒº°ã˰mÒÈÓÓºË
°ãºmÒË m
3
Λ
¯ÈmÓº°ÒãÓº Ó˯ÈmËÓ°m
rg
123
110
101
3
 }ºº¯ºË
ÒäËËä˰º¹º°}ºã}
det
123
110
101
40
=−

°
 |ºÏÓÈÒä Ò°}ºä©Ë }ºº¯ÒÓÈ© ªãËäËÓÈ
x
˯ËÏ
ξξ
ξ
123
,,
 ºÈ
xg g g
=+ +
ξ
ξ
ξ
11 2 2 33
ÒãÒm}ºº¯ÒÓÈÓº®Áº¯äË
1
3
1
1
1
1
2
1
0
3
0
1
12 3
=+ +
ξ
ξ

c È Ï  Ë ã                                                      179
ÒÓˮӺ˹¯º°ˆ¯ÈÓ°ˆmº



 vã˰ˆmÒË                       ‚°ˆ m Λn ÏÈÈÓ­ÈÏÒ° {g1, g 2 ,..., g n } m}ºˆº¯ºä}ºº¯ÒÓȈӺ˹¯Ë
 
                                                                                                                            n
                                  °ˆÈmãËÓÒË ªãËäËӈºm ÒäËˈ mÒ x =                                                   ∑ ξ i g i  ‘ºÈ }ÈÎÈ« °ºmä˰ˆÓÈ«
                                                                                                                          i =1
                                  Ó˺Óº¯ºÓÈ«ãÒÓË®ÓÈ«°Ò°ˆËäÈ mãÒÓˮө²‚¯ÈmÓËÓÒ®° nÓËÒÏm˰ˆ
                                                    n
                                  Ó©äÒ           ∑α jiξ i = β j , j = [1, m] º¹¯ËËã«ËˆÓË}ºˆº¯‚                                                          ҹ˯¹ãº°}º°ˆ Γm
                                                  i =1
                                   Λn 
                  
                  
  iº}ÈÏȈËã°ˆmº
   
       kÓÈãºÒÓº¯È°°‚ÎËÓҫ乯ÒmËËÓÓ©äã«°ã˰ˆmÒ«
        
        
        
 ~ÈÈÈ
 
                                  Íévknéqz·zvësnuntz€ g1,g 2 ,g 3 viéjoyízijoqxk Λ3 qtjpzqrvvé
                                  lqtjztvn wénlxzjksntqn ësnuntzj x  k ëzvu ijoqxn nxsq k tnrvzvévu
                                                        1         1          2           3
                                  qx}vltvuijoqxn x = 3  g1 = 1  g 2 = 1 q g 3 = 0 
                                                        1         1          0           1
                  
                  
 cËËÓÒË
                                  ° i㫈ººˆº­©ÒϪãËäËӈºm g1,g 2 ,g 3 äºÎÓº­©ãºº­¯ÈϺmȈ m Λ3 
                                        ­ÈÏÒ° Ó˺­²ºÒäº Ò º°ˆÈˆºÓº º¹¯ËËãËÓÒË   ˆº­© ªˆÒ
                                        ªãËäËӈ©­©ãÒãÒÓˮӺÓËÏÈmÒ°Òä©äҁº°ã˰ˆmÒ ÈÓÓºË
                                                                                                                                                        1 2 3
                                             ‚°ãºmÒË m Λ  ¯ÈmÓº°Òã Óº Ó˯ÈmËÓ°ˆm‚ rg 1 1
                                                                           3
                                                                                                                                                            0                  ≥ 3  }ºˆº¯ºË
                                                                                                                                                        1 0 1
                                                                         1 2 3
                                             ÒäËˈä˰ˆº¹º°}ºã }‚ det 1 1 0 = −4 ≠ 0 
                                                                         1 0 1
                                                                       
                                                                       
                                  ° |­ºÏÓÈÒä Ò°}ºä©Ë }ºº¯ÒÓȈ© ªãËäËӈÈ x ˯ËÏ ξ1 , ξ 2 , ξ 3  ‘ºÈ
                                              x = ξ1 g1 + ξ2 g 2 + ξ3 g 3 ÒãÒm}ºº¯ÒÓȈӺ®Áº¯äË
                                             
                                                                                                 1      1      2      3
                                                                                                 3 = ξ1 1 + ξ2 1 + ξ3 0 
                                                                                                 1      1      0      1