Аналитическая геометрия и линейная алгебра. Умнов А.Е. - 177 стр.

UptoLike

Составители: 

Рубрика: 

cÈÏ Ëã
181
ÒÓˮӺË¹¯º°¯ÈÓ°mº
101
011
321
=G
Ò
893
753
22167
=F

|ºÏÓÈÒä ˯ËÏ
S
äÈ¯Ò ¹Ë¯Ë²ºÈ º ÈÏÒ°È
{, , }
′′
ggg
123
}
ÈÏÒ°
},,{
321
ggg
 ã« }ºº¯º®
=
′′
xSx
 sº ÒÏ °ãºmÒ®
xGx=
Ò
xFx=
′′
°ãËË º
=
′′
xGFx
1

¹º°}ºã}äÈ¯ÒÈ
G
ºËmÒÓºÓËm©¯ºÎËÓÓÈ«
ºÈ
Sx G Fx
′′
=
′′
1
ã«ãººªãËäËÓÈ
′′
x
Èªºm
°Òã ãËää©  ºÏÓÈÈË º Ò°}ºäÈ« äÈ¯ÒÈ ¹Ë¯Ë²ºÈ
SGF
=
1

°
 º°ÒÈm¹¯ºÒÏmËËÓÒË
123
110
101
1
893
753
22167
Ò°¹ºãÏ«Óȹ¯Òä˯°²Ëäº¹Ò°ÈÓÓm¹ã«m©¯ÈÎËÓÒ®È
GF
1
¹ºãÈËä
S =
234
123
134

ÈÈ

Æ sqtnptvu wévxzéjtxzkn utvmv·sntvk xznwntq tn k¡n ·nu  tjpzq
ijoqxqéjounétvxzwnénxn·ntq¹lky}sqtnpt}vivsv·nrësnuntzvk
x
x
x
1
23
2
23
3
23
12 3
18 6 5
10 5 8
()
()
()
ττττ
ττττ
ττττ
=++ +
=− + +
=−+
q
y
y
y
1
23
2
23
3
23
14 5
32 6 3
42 5 8
()
()
() .
ττττ
ττττ
ττττ
=+ +
=− + +
=+ + +
c È Ï  Ë ã                                                      181
ÒÓˮӺ˹¯º°ˆ¯ÈÓ°ˆmº



                                                                                              1        2       3                            7       16         22
                                                                                  G = 1                1       0 Ò F = 3                             5          7 
                                                                                      1                0       1         3                             9          8
                                             
                                             
                                             |­ºÏÓÈÒä ˯ËÏ S  äȈ¯Ò‚ ¹Ë¯Ë²ºÈ ºˆ ­ÈÏÒ°È {g1′ , g 2′ , g 3′ }  }
                                             ­ÈÏÒ°‚ {g1′′,g ′2′ ,g 3′′ }  ã« }ºˆº¯º®                                        x′ = S                x ′′  sº ÒÏ ‚°ãºmÒ®
                                                                                                                                                                                 −1
                                                 x = G                x ′  Ò x = F                          x ′′  °ãË‚ˈ ˆº x ′ = G                                              F        x ′′ 
                                             ¹º°}ºã }‚äȈ¯ÒÈ G ºËmÒÓºÓËm©¯ºÎËÓÓÈ«
                                             
                                                                                             −1
                                             ‘ºÈ S x ′′ = G      F x ′′ ã«ã ­ººªãËäËӈÈ x ′′ Ȫˆºm
                                             °Òã‚ ãËää©  ºÏÓÈÈˈ ˆº Ò°}ºäÈ« äȈ¯ÒÈ ¹Ë¯Ë²ºÈ
                                                                    −1
                                                 S = G                      F 
                                  
                                  
                                  ° º°҈Èm¹¯ºÒÏmËËÓÒË
                                  
                                                                                                                        −1
                                                                                                   1 2 3                         7      16         22
                                                                                                   1 1 0                         3       5          7 
                                                                                                   1 0 1                         3       9          8
                                             
                                             Ò°¹ºã ς«Óȹ¯Òä˯°²Ë䂺¹Ò°ÈÓӂ m¹ã«m©¯ÈÎËÓÒ®mÒÈ
                                                       −1
                                                 G            F ¹ºã‚ÈËä
                                                                                                                             
                                                                                                                           2 3 4
                                                                                                            S = 1 2 3 
                                                                                                                1 3 4
                  
                  
                  
                  
 ~ÈÈÈ                          Æ sqtnptvu wévxzéjtxzkn utvmv·sntvk xznwntq tn k€¡n ·nu  tjpzq
                           ijoqxqéjounétvxzwnénxn·ntq¹lky}sqtnpt€}vivsv·nrësnuntzvk
                                  
                                                   x1 (τ ) = 1 + 2τ + τ 2 + 3τ 3            y1 (τ ) = 1 + 4τ − τ 2 + 5τ 3
                                                   x 2 (τ ) = −1 + 8τ − 6τ 2 + 5τ 3 q y 2 (τ ) = 3 − 2τ + 6τ 2 + 3τ 3                                                                   
                                                   x 3 (τ ) =     10τ − 5τ 2 + 8τ 3         y 3 (τ ) = 4 + 2τ + 5τ 2 + 8τ 3                                                               .