Аналитическая геометрия и линейная алгебра. Умнов А.Е. - 176 стр.

UptoLike

Составители: 

Рубрика: 


Ë} ÒÒ}ÈÁË ¯©m©° Ë®äÈËäÈÒ}Òlnj
ÙkÓÈãÒÒ˰}È«˺äË¯Ò«ÒãÒÓË®ÓÈ«ÈãË¯Èµ

äÓºmkp
° j°¹ºãϺmÈm °ãºmÒË ¯ÈmËÓ°mÈ m² ªãËäËÓºm m }ºº¯ÒÓÈÓº®
Áº¯äË¹ºãÒä°Ò°ËäãÒÓˮө²¯ÈmÓËÓÒ®
,
1
3
132
31
21
321
=+
=+
=++
ξ
ξ
ξ
ξ
ξ
ξ
ξ
¯ËÒm }ºº¯ ¹º ¹¯ÈmÒã z¯Èä˯È ˺¯ËäÈ  ÒãÒ äËººä
È°°È ¹ ¹ºãÒä
ξ
ξ
ξ
123
21 1
===
,,
 |}È °ãËË º
ªãËäËÓ
x
m ÈÏÒ°Ë º¯ÈϺmÈÓÓºä ÒÏ ªãËäËÓºm
321
,,
ggg
 ÒäËË
}ºº¯ÒÓÈÓºË¹¯Ë°ÈmãËÓÒË
1
1
2

ÈÈ

Ëjpzq ujzéq|y wnén}vlj vz ijoqxj k
Λ
3
 viéjovkjttvmv ësnuntzjuq
{, , }′′
ggg
123
rijoqxy
{, , }′′ ′′ ′′
ggg
123
nxsqktnrvzvévuqx}vltvuijoqxn
=
g
1
1
1
1

=
g
2
2
1
0

=
g
3
3
0
1

3
3
7
1
=
g

9
5
16
2
=
g
q
8
7
22
3
=
g

ËÓÒË
° °
x

x
Ò
′′
x
ººÏÓÈÈ}ºº¯ÒÓÈÓ©Ë°ºã©ªãË
äËÓÈ
x
mÈÏҰȲÒ°²ºÓºä
},,{
321
ggg
Ò
},,{
321
ggg
°ººmË°mËÓÓº
ºÈ ¹º º¹¯ËËãËÓÒ Ò m °Òã ˺¯Ëä© ÒäË ä˰º
¯ÈmËÓ°mÈ
xGx
=
Ò
xFx
=
′′

Ë äÈ¯Ò©
G
Ò
F
°º°ÈmãËÓ© ÒÏ }ºº¯ÒÓÈÓ©² °ºãºm
ÈÏÒ°Ó©²ªãËäËÓºm
321
,, ggg
Ò
321
,, ggg
º˰
 Ë }  Ò Ò    } È Á Ë  ¯ ©   m © °  Ë ®   ä È ˆ Ë ä È ˆ Ò } Ò   l n ‘ j 
ÙkÓÈã҈Ò˰}È«˺äˈ¯Ò«ÒãÒÓË®ÓÈ«ÈãË­¯ÈµäÓºmkp



                    ° j°¹ºã ϺmÈm ‚°ãºmÒË ¯ÈmËÓ°ˆmÈ m‚² ªãËäËӈºm m }ºº¯ÒÓȈӺ®
                          Áº¯ä˹ºã‚Òä°Ò°ˆËä‚ãÒÓˮө²‚¯ÈmÓËÓÒ®
                    
                                                                       ξ1 + 2ξ 2 + 3ξ 3 = 1
                                                                      
                                                                       ξ1 + ξ 2        =3                   
                                                                      ξ +           ξ3 = 1              ,
                                                                       1
                                
                                
                                ¯Ë Òm }ºˆº¯‚  ¹º ¹¯ÈmÒã‚ z¯Èä˯È ˆËº¯ËäÈ   ÒãÒ äˈººä
                                €È‚°°È ¹  ¹ºã‚Òä ξ1 = 2 , ξ2 = 1 , ξ3 = −1 |ˆ}‚È °ãË‚ˈ ˆº
                                ªãËäËӈ x  m ­ÈÏÒ°Ë º­¯ÈϺmÈÓÓºä ÒÏ ªãËäËӈºm g1,g 2 ,g 3  ÒäËˈ
                                                                                    2
                                }ºº¯ÒÓȈӺ˹¯Ë°ˆÈmãËÓÒË                        1 
                                                                                  −1
            
            
            
 ~ÈÈÈ                Ëjpzq ujzéq|y wnén}vlj vz ijoqxj k Λ 3  viéjovkjttvmv ësnuntzjuq
 
                        {g1′ , g 2′ , g 3′ } rijoqxy {g1′′, g 2′′, g 3′′} nxsqktnrvzvévuqx}vltvuijoqxn
                        
                                 1                       2                        3                      7                         16
                           g1′ = 1              g 2′ = 1               g 3′ = 0             g1′′ = 3               g ′2′ = 5         q
                                 1                       0                        1                      3                          9
                                   22
                           g 3′′ = 7 
                                       8
            
            
 cËËÓÒË              ° ‚°ˆ  x  x ′ Ò x ′′ º­ºÏÓÈÈ ˆ}ºº¯ÒÓȈө˰ˆºã­©ªãË
                                äËӈÈ xm­ÈÏҰȲÒ°²ºÓºä {g1′ ,g ′2 ,g 3′ } Ò {g1′′,g 2′′ ,g 3′′} °ººˆmˈ°ˆmËÓÓº
                                ‘ºÈ ¹º º¹¯ËËãËÓÒ   Ò m °Òã‚ ˆËº¯Ëä©   ÒäË ˆ ä˰ˆº
                                ¯ÈmËÓ°ˆmÈ
                                
                                                              x = G          x ′ Ò x = F                   x ′′ 
                                
                                
                                Ë äȈ¯Ò© G  Ò F  °º°ˆÈmãËÓ© ÒÏ }ºº¯ÒÓȈө² °ˆºã­ºm
                                ­ÈÏÒ°Ó©²ªãËäËӈºm g1′ ,g ′2 ,g 3′ Ò g1′′,g ′2′ ,g 3′′ ˆº˰ˆ