Аналитическая геометрия и линейная алгебра. Умнов А.Е. - 261 стр.

UptoLike

Составители: 

Рубрика: 

cÈÏËã
 

pm}ãÒºmº¹¯º°¯ÈÓ°mº
ËääÈ
°
E
ÒÓmȯÒÈÓÓºË ¹º¹¯º°¯ÈÓ°mº °È亰º¹¯«ÎËÓÓºº º¹Ë
¯Èº¯È
R
Ë®°m˺m
E
Ò¹°
′′
E
º¯ººÓÈãÓºËº¹ºãÓË
ÓÒË}
E
m
E
ºÈ
′′
E
È}ÎËÒÓmȯÒÈÓÓºË¹º¹¯º°¯ÈÓ°mºº¹Ë
¯Èº¯È
R

iº}ÈÏÈËã°mº
E
ÒÓmȯÒÈÓÓº ã«º¹Ë¯Èº¯È
R
º˰
∀∈
xERxE:
p°ãÒ
′′
E
º¯ºº
ÓÈãÓºËº¹ºãÓËÓÒË
E
ºã«ã©²
xE
Ò
′′
′′ ′′
=xExx
:( , ) 0

º°}ºã}
E
ÒÓmȯÒÈÓÓºË ¹º¹¯º°¯ÈÓ°mº
R
 º Ë È}ÎË ÒäË ä˰º
(
,)Rx x
′′
=
0
sºm°Òã°È亰º¹¯«ÎËÓÓº°Ò
R
Ò
(,
)
′′
=
xRx 0
º°ãËÓËË¯ÈmËÓ
°mººÏÓÈÈËº
ExExR
;
ˆ
º˰Ò¹º¹¯º°¯ÈÓ°mº
′′
E
ËÒÓ
mȯÒÈÓÓ©äã«º¹Ë¯Èº¯È
R

ËääÈº}ÈÏÈÓÈ
˺¯ËäÈ

iã« ãºº °È亰º¹¯«ÎËÓÓºº º¹Ë¯Èº¯È
R
m
E
n
°˰mË º¯º
Óº¯äÒ¯ºmÈÓÓ©®ÈÏÒ°°º°º«Ò®ÒÏ°º°mËÓÓ©²mË}º¯ºm
R

iº}ÈÏÈËã°mº
iã« °È亰º¹¯«ÎËÓÓºº º¹Ë¯Èº¯È
R
m
E
n
°˰mË ¹º }¯È®ÓË® ä˯Ë ºÓº
°º°mËÓÓºË ÏÓÈËÓÒË
λ
1
 º ãËääË  ªº °º°mËÓÓºË ÏÓÈËÓÒË
mË˰mËÓÓº jÏ °Ò°Ëä© ¯ÈmÓËÓÒ®  äºÎÓº ÓÈ®Ò ºmËÈÒ®
λ
1
°º°mËÓÓ©® mË}º¯
e
1
 rËÏ º¯ÈÓÒËÓÒ« ºÓº°Ò äºÎÓº °ÒÈ º
e
1
1=

p°ãÒ
n=1
ºº}ÈÏÈËã°mºÏÈm˯ËÓº
cȰ°äº¯Òä
E
1
ãÒÓË®Óººãº} ªãËäËÓÈ
e
1
 «mã«°« ºÓºä˯өä
ÒÓmȯÒÈÓÓ©ä°º°mËÓÓ©ä¹ º¹¯º°¯ÈÓ°mºä
R
°
E
n
1
º¯ººÓÈãÓºË
º¹ºãÓËÓÒË}
E
1
ºÈ¹ºãËääË
E
n
1
ÒÓmȯÒÈÓÓººÓº°ÒËãÓºº¹Ë
¯Èº¯È
R

cȰ°äº¯Òä˹˯º¹Ë¯Èº¯
R
}È}Ë®°mÒ®ºã}º m
E
n
1
ºÈºËmÒÓº
º
R
 °È亰º¹¯«ÎËÓÓ©® º¹Ë¯Èº¯ ÏÈÈÓÓ©® m
E
n
1
 ¹º°}ºã}
E
n
1
ÒÓmȯÒÈÓÓº ºÓº°ÒËãÓº
R
¹º ãËääË  Ò }¯ºäË ºº ã«
∀∈ =xy E Rxy xRy
n
,:(
,) (,
)
mºäÒ°ãËÒã«
∀∈
xy E
n
,
1

¯ÒäËÓ««ÒÏãºÎËÓÓ©Ë Ë ¯È°°Î ËÓÒ« ÓÈ®ËäÓºmºË °º°mËÓÓºËÏÓÈËÓÒË
λ
2
Ò °ººmË°mÒ® Ëä °º°mËÓÓ©® mË}º¯
e
2
rËÏ º¯ÈÓÒËÓÒ« ºÓº°Ò
cÈÏËã
pm}ãÒºmº¹¯º°ˆ¯ÈÓ°ˆmº



 ËääÈ          ‚°ˆ  E ′   ÒÓmȯÒÈӈӺË ¹º¹¯º°ˆ¯ÈÓ°ˆmº °È亰º¹¯«ÎËÓÓºº º¹Ë
                         ¯Èˆº¯È R Ë®°ˆm‚ Ëºm E Ò¹‚°ˆ  E ′′ º¯ˆººÓÈã Ӻ˺¹ºãÓË
                         ÓÒË} E ′ m E ‘ºÈ E ′′ ˆÈ}ÎËÒÓmȯÒÈӈӺ˹º¹¯º°ˆ¯ÈÓ°ˆmºº¹Ë
                         ¯Èˆº¯È R 

  iº}ÈÏȈËã°ˆmº
   
   
       E ′ ÒÓmȯÒÈӈӺ㫺¹Ë¯Èˆº¯È R ˆº˰ˆ  ∀x ∈ E ′ : Rx  ∈ E ′ p°ãÒ E ′′ º¯ˆºº
      ÓÈã Ӻ˺¹ºãÓËÓÒË E ′ ˆºã«ã ­©² x ′ ∈ E ′ Ò x ′′ ∈ E ′′ : ( x ′, x ′′) = 0 
      
      º°}ºã }‚ E ′  ÒÓmȯÒÈӈӺË ¹º¹¯º°ˆ¯ÈÓ°ˆmº R  ˆº ­‚ˈ ˆÈ}ÎË Òäˈ  ä˰ˆº
         ′, x ′′) = 0 sºm°Òã‚°È亰º¹¯«ÎËÓÓº°ˆÒ R Ò ( x ′, Rx
      ( Rx                                                            ′′) = 0 º°ãËÓË˯ÈmËÓ
           °ˆmººÏÓÈÈˈˆº Rˆ x ′′ ∈ E ′′ ;               ∀x ′′ ∈ E ′′ ˆº˰ˆ Ò¹º¹¯º°ˆ¯ÈÓ°ˆmº E ′′ ­‚ˈÒÓ
           mȯÒÈӈөä㫺¹Ë¯Èˆº¯È R 
     
     
     ËääȺ}ÈÏÈÓÈ
           
           
 ‘˺¯ËäÈ                iã« ã ­ºº °È亰º¹¯«ÎËÓÓºº º¹Ë¯Èˆº¯È R  m E n  °‚Ë°ˆm‚ˈ º¯ˆº
 
                         Óº¯äÒ¯ºmÈÓÓ©®­ÈÏÒ°°º°ˆº«Ò®Òϰº­°ˆmËÓÓ©²mË}ˆº¯ºm R 

  iº}ÈÏȈËã°ˆmº
   
   
           iã« °È亰º¹¯«ÎËÓÓºº º¹Ë¯Èˆº¯È R  m E n  °‚Ë°ˆm‚ˈ ¹º }¯È®ÓË® ä˯Ë ºÓº
           °º­°ˆmËÓÓºË ÏÓÈËÓÒË λ1  º ãËääË  ªˆº °º­°ˆmËÓÓºË ÏÓÈËÓÒË
           m˝˰ˆmËÓÓº jÏ °Ò°ˆËä© ‚¯ÈmÓËÓÒ®   äºÎÓº ÓÈ®ˆÒ ºˆmËÈ Ò® λ1 

           °º­°ˆmËÓÓ©® mË}ˆº¯ e1  rËÏ º¯ÈÓÒËÓÒ« º­Óº°ˆÒ äºÎÓº °҈Ȉ  ˆº e1 = 1 
           p°ãÒn=1ˆºº}ÈÏȈËã °ˆmºÏÈm˯ ËÓº
           
           cȰ°äºˆ¯Òä E 1   ãÒÓˮӂ  º­ºãº}‚ ªãËäËӈÈ e1  «mã« ‚ °« ºÓºä˯өä
           ÒÓmȯÒÈӈөä°º­°ˆmËÓө乺¹¯º°ˆ¯ÈÓ°ˆmºä R ‚°ˆ  E n−1 º¯ˆººÓÈã ÓºË
           º¹ºãÓËÓÒË} E 1 ‘ºÈ¹ºãËääË E n−1 ÒÓmȯÒÈӈӺºˆÓº°ÒˆËã Óºº¹Ë
           ¯Èˆº¯È R 
           
           cȰ°äºˆ¯ÒäˆË¹Ë¯ º¹Ë¯Èˆº¯ R }È}Ë®°ˆm‚ Ò®ˆºã }ºm E n−1 ‘ºÈºËmÒÓº
           ˆº R   °È亰º¹¯«ÎËÓÓ©® º¹Ë¯Èˆº¯ ÏÈÈÓÓ©® m E n−1  ¹º°}ºã }‚ E n−1 
           ÒÓmȯÒÈӈӺ ºˆÓº°ÒˆËã Óº R  ¹º ãËääË  Ò }¯ºäË ˆºº ã«
                             , y ) = ( x , Ry
           ∀x , y ∈ E n : ( Rx               ) mˆºäÒ°ãËÒã« ∀x , y ∈ E n −1 
           
           ¯ÒäËÓ«« ÒÏãºÎËÓÓ©Ë m© Ë ¯È°°‚ÎËÓÒ« ÓÈ®Ëä ÓºmºË °º­°ˆmËÓÓºË ÏÓÈËÓÒË
           λ 2  Ò °ººˆmˈ°ˆm‚ Ò® Ëä‚ °º­°ˆmËÓÓ©® mË}ˆº¯ e2  rËÏ º¯ÈÓÒËÓÒ« º­Óº°ˆÒ