Аналитическая геометрия и линейная алгебра. Умнов А.Е. - 263 стр.

UptoLike

Составители: 

Рубрика: 

cÈÏËã
 

pm}ãÒºmº¹¯º°¯ÈÓ°mº
iº}ÈÏÈËã°mº
{ º¯ºÓº¯äÒ¯ºmÈÓÓºä ÈÏÒ°Ë °ÒääË¯Ò˰}È«äÈ¯ÒÈ
R
º¹¯ËËã«Ë°Èäº
°º¹¯«ÎËÓÓ©®º¹Ë¯Èº¯¹ºªºäm˰mËÒ°}ºäº®äÈ¯Ò©
Q
äºÎÓºm©
¯È äÈ¯Ò ¹Ë¯Ë²ºÈ º ÈÓÓºº º¯ºÓº¯äÒ¯ºmÈÓÓºº ÈÏÒ°È } º¯ºÓº¯äÒ
¯ºmÈÓÓºä ÈÏÒ° º¯ÈϺmÈÓÓºä °º°mËÓÓ©äÒ mË}º¯ÈäÒ ªºº º¹Ë¯Èº¯È ¹º
°²ËäËÒ°¹ºãϺmÈÓÓº®mº}ÈÏÈËã°mË˺¯Ëä©
vã˰mÒËº}ÈÏÈÓº
|¯ººÓÈãÓ©Ëº¹Ë¯Èº¯©
|¹¯ËËãËÓÒË

ÒÓˮө® º¹Ë¯Èº¯
Q
 Ë®°mÒ® m Ëm}ãÒºmºä ¹¯º°¯ÈÓ°mË
E

ÓÈÏ©mÈË°« vézvmvtjstu ÒãÒ qovunzéq·nxrqu ˰ãÒ ã«
∀∈xy E
,
ÒäËËä˰º¯ÈmËÓ°mº
(
,
)(,)Qx Qy x y
=

jÏ º¹¯ËËãËÓÒ«  °ãËË º º¯ººÓÈãÓ©® º¹Ë¯Èº¯ °º²¯ÈÓ«Ë Óº¯ä©
ªãËäËÓºmÒmËãÒÒÓ©ãºmäËÎÓÒäÒiË®°mÒËãÓº
,,;cos
),(
ˆˆ
)
ˆ
,
ˆ
(
cos
;),()
ˆ
,
ˆ
(
ˆ
Eyx
yx
yx
yQxQ
yQxQ
xxxxQxQxQ
===
===
ϕ
ψ
Ë
ϕ
mËãÒÒÓÈãÈäËÎªãËäËÓÈäÒ
x
Ò
y
È
ψ
mËãÒÒÓÈãÈäËÎªãË
äËÓÈäÒ
Qx
Ò
Qy

˺¯ËäÈ

|¯ººÓÈãÓ©®º¹Ë¯Èº¯
Q
ÒäËËº¯ÈÓ©®
Q
1
¹¯ÒËä

QQ
−+
=
1

iº}ÈÏÈËã°mº
iã«
∀∈xy E
,
¹º º¹¯ËËãËÓÒ 
(
,
)(,)
Qx Qy x y
=
 º°È °ãËË º
(,

)(,)
xQQy xy
+
=
ÒãÒ
(,(

))
xQQ Ey
+
−=0
 º°ãËÓËË ¯ÈmËÓ°mº m °Òã ãËää©
ºÏÓÈÈËº

QQ E O
+
−=

cÈÏËã
pm}ãÒºmº¹¯º°ˆ¯ÈÓ°ˆmº



  iº}ÈÏȈËã°ˆmº
   
   
           { º¯ˆºÓº¯äÒ¯ºmÈÓÓºä ­ÈÏÒ°Ë °Òääˈ¯Ò˰}È« äȈ¯ÒÈ                                               R  º¹¯ËËã«Ëˆ °Èäº
           °º¹¯«ÎËÓÓ©®º¹Ë¯Èˆº¯¹ºªˆºä‚m}È˰ˆmËÒ°}ºäº®äȈ¯Ò© Q äºÎÓºm©
           ­¯Èˆ  äȈ¯Ò‚ ¹Ë¯Ë²ºÈ ºˆ ÈÓÓºº º¯ˆºÓº¯äÒ¯ºmÈÓÓºº ­ÈÏÒ°È } º¯ˆºÓº¯äÒ
           ¯ºmÈÓÓºä‚ ­ÈÏÒ°‚ º­¯ÈϺmÈÓÓºä‚ °º­°ˆmËÓÓ©äÒ mË}ˆº¯ÈäÒ ªˆºº º¹Ë¯Èˆº¯È ¹º
           °²ËäËÒ°¹ºã ϺmÈÓÓº®mº}ÈÏȈËã °ˆmˈ˺¯Ëä©
     
     
     vã˰ˆmÒ˺}ÈÏÈÓº
           
           
           
           
|¯ˆººÓÈã ө˺¹Ë¯Èˆº¯©
           
           
           
 |¹¯ËËãËÓÒË             ÒÓˮө® º¹Ë¯Èˆº¯ Q  Ë®°ˆm‚ Ò® m Ëm}ãÒºmºä ¹¯º°ˆ¯ÈÓ°ˆmË E
 
                          ÓÈÏ©mÈˈ°« vézvmvtjst€u ÒãÒ qovunzéq·nxrqu  ˰ãÒ ã« ∀x , y ∈ E 
                                                    , Qy
                          ÒäËˈä˰ˆº¯ÈmËÓ°ˆmº ( Qx   ) = ( x , y ) 
      
      
      
      jÏ º¹¯ËËãËÓÒ«  °ãË‚ˈ ˆº º¯ˆººÓÈã Ó©® º¹Ë¯Èˆº¯ °º²¯Èӫˈ Óº¯ä©
ªãËäËӈºmÒmËãÒÒÓ©‚ãºmäË΂ÓÒäÒiË®°ˆm҈Ëã Óº
      
                                        Qˆ x = (Qˆ x, Qˆ x ) = ( x, x ) = x ;

                                                    (Qˆ x, Qˆ y )   ( x, y )                                     
                                       cosψ =                     =          = cos ϕ ;              x, y ∈ E,
                                                     ˆ
                                                    Qx Qy    ˆ       x y
        
Ë ϕ   mËãÒÒÓÈ ‚ãÈ äË΂ ªãËäËӈÈäÒ x  Ò y  È ψ   mËãÒÒÓÈ ‚ãÈ äË΂ ªãË
          Ò Qy
äËӈÈäÒ Qx     
      
      
      
 ‘˺¯ËäÈ                |¯ˆººÓÈã Ó©®º¹Ë¯Èˆº¯ Q ÒäËˈº­¯ÈˆÓ©® Q −1 ¹¯ÒËä Q −1 = Q + 
 

  iº}ÈÏȈËã°ˆmº
   
                                                          , Qy
           iã« ∀x , y ∈ E  ¹º º¹¯ËËãËÓÒ   ( Qx   ) = ( x , y )  ºˆ° È °ãË‚ˈ ˆº
           ( x , Q + Qy
                       ) = ( x , y )  ÒãÒ ( x ,( Q + Q − E ) y ) = 0  º°ãËÓËË ¯ÈmËÓ°ˆmº m °Òã‚ ãËää©
           ºÏÓÈÈˈˆº Q + Q − E = O