Аналитическая геометрия и линейная алгебра. Умнов А.Е. - 262 стр.

UptoLike

Составители: 

Рубрика: 


Ë} ÒÒ}ÈÁË ¯©m©° Ë®äÈËäÈÒ}Òlnj
ÙkÓÈãÒÒ˰}È«˺äË¯Ò«ÒãÒÓË®ÓÈ«ÈãË¯Èµ

äÓºmkp
äºÎÓº °ÒÈº
e
2
1
=
¯Òªºä
λ
2
äºÎË°ãȮӺ°ºm¹È°°
λ
1
ºÓÈ}º
ÒÏ ¹º°¯ºËÓÒ« «°Óº º
(, )
ee
12
0
=
 p°ãÒ
n
=2
 º º}ÈÏÈËã°mº ÏÈm˯ËÓº
jÓÈË ¯È°°äº¯Òä
E
2
ãÒÓË®Óººãº}
{, }
ee
12
Ò ËË º¯ººÓÈãÓºË º
¹ºãÓËÓÒË
E
n
2
ÓÈ®ËäÓºmºË°º°mËÓÓºËÏÓÈËÓÒË
λ
3
Ò°ººmË°mÒ®Ëä
°º°mËÓÓ©®mË}º¯
e
3
Ò
kÓÈãºÒÓ©Ë¯È°°ÎËÓÒ«¹¯ºmºÒäºҰ˯¹ÈÓÒ«
E
n

˺¯ËäÈº}ÈÏÈÓÈ
vã˰mÒË

{ ÈÏÒ°Ë ¹º°¯ºËÓÓºä m ˺¯ËäË

°È亰º¹¯«ÎËÓÓ©® º¹Ë¯Èº¯
R
ÒäËËÒȺÓÈãÓäÈ¯Òm
E
n

iº}ÈÏÈËã°mº
{©Ë}ÈËÒÏm˯ÎËÓÒ«˺¯Ëä©
vã˰mÒË

cÈÏä˯Ӻ°°º°mËÓÓºº ÒÓmȯÒÈÓÓºº ¹º¹¯º°¯ÈÓ°mÈ ºmËÈ
˺ ÓË}ºº¯ºä °º°mËÓÓºä ÏÓÈËÓÒ °È亰º¹¯«ÎËÓÓºº º¹Ë¯È
º¯È¯ÈmÓÈ}¯ÈÓº°Òªºº°º°mËÓÓººÏÓÈËÓÒ«
iº}ÈÏÈËã°mº
vãËËÒÏº}ÈÏÈËã°mÈ˺¯Ëä©
vã˰mÒË

p°ãÒ ãÒÓˮө® º¹Ë¯Èº¯
R
m
E
n
ÒäËË
n
¹º¹È¯Óº º¯ººÓÈãÓ©²
°º°mËÓÓ©²mË}º¯ºmººÓ°È亰º¹¯«ÎËÓÓ©®
iº}ÈÏÈËã°mº
¯ºÓº¯äÒ¯Ëä°º°mËÓÓ©ËmË}º¯©º¹Ë¯Èº¯È
R
Ò¹¯ÒäËäÒ²ÏÈº¯ºÓº¯äÒ
¯ºmÈÓÓ©® ÈÏÒ° m }ºº¯ºä äÈ¯ÒÈ ªº º ãÒÓˮӺº º¹Ë¯Èº¯È
R
e
ÒȺ
ÓÈãÓÈ«Ò°ã˺mÈËãÓº°ÒääË¯Ò˰}È«ºÈm°ÒããËää©ãÒÓˮө®
º¹Ë¯Èº¯
$
°È亰º¹¯«ÎËÓÓ©®
vã˰mÒËº}ÈÏÈÓº
vã˰mÒË

p°ãÒ
R
°ÒääË¯Ò˰}È« äÈ¯ÒÈ º °˰mË º¯ººÓÈãÓÈ«
äÈ¯ÒÈ
Q
È}È« º äÈ¯ÒÈ
DQRQQRQ==
1T
ÒȺÓÈã ÓÈ«
 Ë }  Ò Ò    } È Á Ë  ¯ ©   m © °  Ë ®   ä È ˆ Ë ä È ˆ Ò } Ò   l n ‘ j 
ÙkÓÈã҈Ò˰}È«˺äˈ¯Ò«ÒãÒÓË®ÓÈ«ÈãË­¯ÈµäÓºmkp



          äºÎÓº°҈Ȉ ˆº e2 = 1 ¯Òªˆºä λ 2 äºÎˈ°ã‚ȮӺ°ºm¹È°ˆ ° λ1 ºÓÈ}º
          ÒÏ ¹º°ˆ¯ºËÓÒ« «°Óº ˆº ( e1 , e2 ) = 0  p°ãÒ n=2 ˆº º}ÈÏȈËã °ˆmº ÏÈm˯ ËÓº
          jÓÈË ¯È°°äºˆ¯Òä E 2   ãÒÓˮӂ  º­ºãº}‚ { e1 , e2 }  Ò ËË º¯ˆººÓÈã ÓºË º
          ¹ºãÓËÓÒË E n−2 ÓÈ®ËäÓºmºË°º­°ˆmËÓÓºËÏÓÈËÓÒË λ3 Ò°ººˆmˈ°ˆm‚ Ò®Ëä‚
          °º­°ˆmËÓÓ©®mË}ˆº¯ e3 Òˆ
          
          kÓÈãºÒө˯Ȱ°‚ÎËÓÒ«¹¯ºmºÒäºÒ°˯¹ÈÓÒ« E n 
      
      
      ‘˺¯ËäȺ}ÈÏÈÓÈ
          
          
          
    vã˰ˆmÒË          { ­ÈÏÒ°Ë ¹º°ˆ¯ºËÓÓºä m ˆËº¯ËäË  °È亰º¹¯«ÎËÓÓ©® º¹Ë¯Èˆº¯
                 R ÒäËˈÒȺÓÈã ӂ äȈ¯Ò‚m E n 
        
  iº}ÈÏȈËã°ˆmº
    
        {©ˆË}ÈˈÒÏ‚ˆm˯ÎËÓÒ«ˆËº¯Ëä©
        
        
 vã˰ˆmÒË     cÈÏä˯Ӻ°ˆ  °º­°ˆmËÓÓºº ÒÓmȯÒÈӈӺº ¹º¹¯º°ˆ¯ÈÓ°ˆmÈ ºˆmËÈ 
        Ëº ÓË}ºˆº¯ºä‚ °º­°ˆmËÓÓºä‚ ÏÓÈËÓÒ  °È亰º¹¯«ÎËÓÓºº º¹Ë¯È
                ˆº¯È¯ÈmÓÈ}¯ÈˆÓº°ˆÒªˆºº°º­°ˆmËÓÓººÏÓÈËÓÒ«

  iº}ÈÏȈËã°ˆmº
    
        vãË‚ˈÒϺ}ÈÏȈËã °ˆmȈ˺¯Ëä©
        
        
    vã˰ˆmÒË          p°ãÒ ãÒÓˮө® º¹Ë¯Èˆº¯ R  m E n  ÒäËˈ n ¹º¹È¯Óº º¯ˆººÓÈã Ó©²
                °º­°ˆmËÓÓ©²mË}ˆº¯ºmˆººÓ°È亰º¹¯«ÎËÓÓ©®
         
     iº}ÈÏȈËã°ˆmº
      
          ¯ºÓº¯äÒ¯‚Ëä°º­°ˆmËÓÓ©ËmË}ˆº¯©º¹Ë¯Èˆº¯È R Ò¹¯ÒäËäÒ²ÏȺ¯ˆºÓº¯äÒ
          ¯ºmÈÓÓ©® ­ÈÏÒ° m }ºˆº¯ºä äȈ¯ÒÈ ªˆºº ãÒÓˮӺº º¹Ë¯Èˆº¯È                                               R e  ÒȺ
          ÓÈã ÓȫҰã˺mȈËã Óº°Òääˈ¯Ò˰}È«‘ºÈm°Òã‚ãËää©ãÒÓˮө®
         º¹Ë¯Èˆº¯ $  °È亰º¹¯«ÎËÓÓ©®
         
         
      vã˰ˆmÒ˺}ÈÏÈÓº
         
         
    vã˰ˆmÒË          p°ãÒ        R  °Òääˈ¯Ò˰}È« äȈ¯ÒÈ ˆº °‚Ë°ˆm‚ˈ º¯ˆººÓÈã ÓÈ«
    
                                                                                                          −1                      T
                        äȈ¯ÒÈ   Q  ˆÈ}È« ˆº äȈ¯ÒÈ                                 D = Q             R Q = Q                R Q 
                        ÒȺÓÈã ÓÈ«