Аналитическая геометрия и линейная алгебра. Умнов А.Е. - 264 стр.

UptoLike

Составители: 

Рубрика: 


Ë} ÒÒ}ÈÁË ¯©m©° Ë®äÈËäÈÒ}Òlnj
ÙkÓÈãÒÒ˰}È«˺äË¯Ò«ÒãÒÓË®ÓÈ«ÈãË¯Èµ

äÓºmkp
jÏ¯ÈmËÓ°mÈ


QQ E O
+
−=
m©Ë}ÈËº

QQ E
+
=
ÒºÈËÒmÒ°¹¯Ò¹º
äºÒ ÈÓÈãºÒÓ©² ¯È°°ÎËÓÒ® º ËÈ}ÎË°¹¯ÈmËãÒm©ä Ò ¯ÈmËÓ°mº

QQ E
+
=
¹ºº¹¯ËËãËÓÒ¹ºãÒä

QQ
−+
=
1

˺¯ËäÈº}ÈÏÈÓÈ
vã˰mÒË

|¯ººÓÈãÓ©®º¹Ë¯Èº¯
Q
ÓËm©¯ºÎËÓÓ©®
vã˰mÒË

{º¯ºÓº¯äÒ¯ºmÈÓÓºäÈÏÒ°Ë äÈ¯ÒÈº¯ººÓÈãÓººº¹Ë¯Èº¯È º¯
ººÓÈãÓÈ«
iº}ÈÏÈËã°mº
° º¹Ë¯Èº¯
Q
º¯ººÓÈãÓ©® ºÈ ÒÏ °ººÓºËÓÒ«

QQ
−+
=
1
 ¹º ˺¯ËäË
Òm°Òã¹
°
mº¯ºÓº¯äÒ¯ºmÈÓÓºäÈÏÒ°Ë°¹¯ÈmËãÒm©¯ÈmËÓ°mÈ

T
QQ QQ
eeee
−+
===
1
1

sººÈ

T
QQ
ee
=
1
ºÒºÏÓÈÈË°ºãȰӺº¹¯ËËãËÓÒº¯ººÓÈã
Óº°äÈ¯Ò©
Q
e

vã˰mÒËº}ÈÏÈÓº
{¯«Ë¹¯ÒãºÎËÓÒ®º}ÈÏ©mÈË°«¹ºãËÏÓº®
˺¯ËäÈ

|¹ºã«¯Óºä
¯ÈÏãºÎËÓÒÒ
º® ÓËm©¯ºÎËÓÓ©® ãÒÓˮө® º¹Ë¯Èº¯
A
m
E
n
äºÎË ©
ËÒÓ°mËÓÓ©ä º¯ÈϺä ¹¯Ë°ÈmãËÓ m Ë

AQR=
 Ë º¹Ë¯Èº¯
Q
º¯ººÓÈã Ó©® È º¹Ë¯Èº¯
R
°È亰º¹¯«ÎËÓÓ©® Ò ÒäËÒ® ¹º
ãºÎÒËãÓ©Ë°º°mËÓÓ©ËÏÓÈËÓÒ«
iº}ÈÏÈËã°mº
°
º}ÈÎËä mÓÈÈãË º °È亰º¹¯«ÎËÓÓ©® º¹Ë¯Èº¯

AA
+
°ä ¹¯Òä˯ 
ÒäËË ºã}º ¹ºãºÎÒËãÓ©Ë °º°mËÓÓ©Ë ÏÓÈËÓÒ« iË®°mÒËãÓº ¹°

AAf f
+
=
λ
 ºÈ°ºÓº® °º¯ºÓ©
0)
ˆ
,
ˆ
(),
ˆˆ
(
>=
+
fAfAffAA
¹¯Ò
fo
 È °
¯º®
(

,) ( ,) (,)
AAff ff ff
+
==
λλ
º˰
(
,
)(,)
Af Af f f
=
λ
sººÈm°Ë
λ
> 0
m°ÒãÓËm©¯ºÎËÓÓº°Ò
A
Òº¹¯ËËãËÓÒ«°}È㫯Ӻº¹¯ºÒÏmËËÓÒ«
°
°
{ , ,..., }
ee e
n
12
º¯ºÓº¯äÒ¯ºmÈÓÓ©® ÈÏÒ° °º°º«Ò® ÒÏ °º°mËÓÓ©²
mË}º¯ºm

AA
+
 cȰ°äº¯Òä äÓºÎ˰mºªãËäËÓºm
;[,]Ae i n
i
= 1
~ÈäËÒä º
 Ë }  Ò Ò    } È Á Ë  ¯ ©   m © °  Ë ®   ä È ˆ Ë ä È ˆ Ò } Ò   l n ‘ j 
ÙkÓÈã҈Ò˰}È«˺äˈ¯Ò«ÒãÒÓË®ÓÈ«ÈãË­¯ÈµäÓºmkp



          jϯÈmËÓ°ˆmÈ Q + Q − E = O m©ˆË}Èˈˆº Q + Q = E ÒˆºÈ‚­ËÒm Ò° ¹¯Ò¹º
          亝Ò ÈÓÈãºÒÓ©² ¯È°°‚ÎËÓÒ® ˆº ­‚ˈ ˆÈ}ÎË °¹¯ÈmËãÒm©ä Ò ¯ÈmËÓ°ˆmº
             + = E ¹ºº¹¯ËËãËÓÒ ¹ºã‚Òä Q −1 = Q + 
           QQ
     
     
     ‘˺¯ËäȺ}ÈÏÈÓÈ
          
          
 vã˰ˆmÒË             |¯ˆººÓÈã Ó©®º¹Ë¯Èˆº¯ Q ÓËm©¯ºÎËÓÓ©®
 
          
 vã˰ˆmÒË             { º¯ˆºÓº¯äÒ¯ºmÈÓÓºä ­ÈÏÒ°Ë äȈ¯ÒÈ º¯ˆººÓÈã Óºº º¹Ë¯Èˆº¯È º¯
                ˆººÓÈã ÓÈ«
          

  iº}ÈÏȈËã°ˆmº
   
          ‚°ˆ  º¹Ë¯Èˆº¯ Q  º¯ˆººÓÈã Ó©® ‘ºÈ ÒÏ °ººˆÓº ËÓÒ« Q −1 = Q +  ¹º ˆËº¯ËäË
          Òm°Òス ° mº¯ˆºÓº¯äÒ¯ºmÈÓÓºä­ÈÏҰ˰¹¯ÈmËãÒm©¯ÈmËÓ°ˆmÈ
          
                                                             −1
                                                        Q        = Q −1 e = Q +         = Q e 
                                                                                                T
                                                             e                         e
          
                                −1
          sºˆºÈ Q               = Q
                                            T
                                e           e
                                                ˆºÒºÏÓÈÈˈ°ºãȰӺº¹¯ËËãËÓÒ º¯ˆººÓÈã 

          Óº°ˆ äȈ¯Ò© Q e 
     
     vã˰ˆmÒ˺}ÈÏÈÓº
          
          
          
          {¯«Ë¹¯ÒãºÎËÓÒ®º}ÈÏ©mÈˈ°«¹ºãËÏÓº®
          
 ‘˺¯ËäÈ                ­º® ÓËm©¯ºÎËÓÓ©® ãÒÓˮө® º¹Ë¯Èˆº¯ A  m E n  äºÎˈ ­©ˆ 
 
  |¹ºã«¯Óºä           ËÒÓ°ˆmËÓÓ©ä º­¯ÈϺä ¹¯Ë°ˆÈmãËÓ m mÒË A = QR
                                                                             Ë º¹Ë¯Èˆº¯ Q 
 ¯ÈÏãºÎËÓÒÒ            º¯ˆººÓÈã Ó©® È º¹Ë¯Èˆº¯ R   °È亰º¹¯«ÎËÓÓ©® Ò ÒäË Ò® ¹º
                        ãºÎ҈Ëã ө˰º­°ˆmËÓÓ©ËÏÓÈËÓÒ«

  iº}ÈÏȈËã°ˆmº
   
         °º}ÈÎËä mÓÈÈãË ˆº °È亰º¹¯«ÎËÓÓ©® º¹Ë¯Èˆº¯ A + A  °ä ¹¯Òä˯  
              ÒäËˈ ˆºã }º ¹ºãºÎ҈Ëã Ó©Ë °º­°ˆmËÓÓ©Ë ÏÓÈËÓÒ« iË®°ˆm҈Ëã Óº ¹‚°ˆ 
               A + A f = λ f  ˆºÈ ° ºÓº® °ˆº¯ºÓ© ( Aˆ + Aˆ f , f ) = ( Aˆ f , Aˆ f ) > 0  ¹¯Ò f ≠ o  È °
              ¯‚º® ( A + A f , f ) = ( λ f , f ) = λ ( f , f ) ˆº˰ˆ  ( A f , A f ) = λ ( f , f ) sºˆºÈm°Ë
               λ > 0 m°Òã‚ÓËm©¯ºÎËÓÓº°ˆÒ A Òº¹¯ËËãËÓÒ«°}È㫯Ӻº¹¯ºÒÏmËËÓÒ«
         
         °‚°ˆ  {e1 , e2 ,..., en }  º¯ˆºÓº¯äÒ¯ºmÈÓÓ©® ­ÈÏÒ° °º°ˆº«Ò® ÒÏ °º­°ˆmËÓÓ©²
              mË}ˆº¯ºm A + A  cȰ°äºˆ¯Òä äÓºÎ˰ˆmº ªãËäËӈºm Ae
                                                                      ; i = [1, n]  ~ÈäˈÒä ˆº
                                                                       i