Аналитическая геометрия и линейная алгебра. Умнов А.Е. - 266 стр.

UptoLike

Составители: 

Рубрика: 


Ë} ÒÒ}ÈÁË ¯©m©° Ë®äÈËäÈÒ}Òlnj
ÙkÓÈãÒÒ˰}È«˺äË¯Ò«ÒãÒÓË®ÓÈ«ÈãË¯Èµ

äÓºmkp
~ÈäËÈÓÒ«
° ˺¯ËäÈº¹ºã«¯Óºä¯ÈÏãºÎËÓÒÒ«mã«Ë°«ººËÓÒËä˺¯Ëä©º
mºÏäºÎÓº°Ò ¹¯Ë°ÈmãËÓÒ« ÈÁÁÒÓÓºº ¹¯Ëº¯ÈϺmÈÓÒ« ¹ãº°}º°Ò m
Ë¹¯ºÒÏmËËÓÒ«m²º¹Ë¯Èº¯ºm¹Ë¯m©®ÒÏ}ºº¯©²º¯ººÓÈãÓ©®
Èmº¯º®°ÎÈÒË¹º mämÏÈÒäÓº¹Ë¯¹ËÓÒ}㫯өäÓȹ¯ÈmãËÓÒ«ä
äÈ¯ÒÈ}ºº¯ººÒȺÓÈãÓÈ«
° {°ãÈËm©¯ºÎËÓÓººº¹Ë¯Èº¯È
A
¯ÈÏãºÎËÓÒË ÈÓÈ㺠ÒÓºË}ÈÏÈÓ
Óºä m ˺¯ËäË  ° Ó˺¯ÒÈËãÓ©äÒ °º°mËÓÓ©äÒ ÏÓÈËÓÒ«äÒ
°È亰º¹¯«ÎËÓÓººº¹Ë¯Èº¯È
R
°˰mËÓºÓËËÒÓ°mËÓÓº
ÈÈ

Ætnrvzvévuvézvtvéuqévkjttvuijoqxnk
E
2
sqtnptpvwnéjzvé
A
qun
nzujzéq|y
20
12
ˆ
=
A
Ëjpzqnmvwvs¹étvnéjosvntqn
ËÓÒË
° {©¹ºãÓÒä Ò°}ºäºË ¯ÈÏãºÎËÓÒË ¹º °²ËäË Ò°¹ºãϺmÈÓÓº® m º}ÈÏÈËã°mË
˺¯Ëä©  lÈ¯ÒÈ º¹Ë¯Èº¯È

AA
+
mÒ°²ºÓºä º¯ºÓº¯äÒ¯ºmÈÓÓºä ÈÏÒ°Ë
¯ÈmÓÈ
32
22
20
12
21
02
ˆˆˆˆˆˆ
T
=
===
++
AAAAAA

vº°mËÓÓ©ËÏÓÈËÓÒ«Ò°º°mËÓÓ©ËmË}º¯©ªººº¹Ë¯Èº¯È¯ÈmÓ©°ººmË°
mËÓÓº
λλ
12 1 2
14
2
1
1
2
== = =
;; ;
ff

¹ºªºä°º²¯ÈÓ««ººÏÓÈËÓÒ«Ò°¹ºãϺmÈÓÓ©Ëmº}ÈÏÈËã°mË˺¯Ëä©
¹ºãÒäã«ªãËäËÓºmº¯ÈÏÒ²º¯ºÓº¯äÒ¯ºmÈÓÓ©ËÈÏÒ°©
{, }
ee
12
e
f
f
e
f
f
1
1
1
2
2
2
2
3
1
3
1
3
2
3
== ==
;
Ò
{, }
′′
ee
12
==
==
=
eAe e Ae
1
1
12
2
2
1
1
3
2
3
11
2
21
02
1
3
2
3
2
3
1
3
λλ
;

 Ë }  Ò Ò    } È Á Ë  ¯ ©   m © °  Ë ®   ä È ˆ Ë ä È ˆ Ò } Ò   l n ‘ j 
ÙkÓÈã҈Ò˰}È«˺äˈ¯Ò«ÒãÒÓË®ÓÈ«ÈãË­¯ÈµäÓºmkp



~ÈäËÈÓÒ«° ‘˺¯ËäȺ¹ºã«¯Óºä¯ÈÏãºÎËÓÒÒ«mã«Ëˆ°«º­º­ËÓÒËäˆËº¯Ë䩺
                     mºÏäºÎÓº°ˆÒ ¹¯Ë°ˆÈmãËÓÒ« ÈÁÁÒÓÓºº ¹¯Ëº­¯ÈϺmÈÓÒ« ¹ãº°}º°ˆÒ m
                     mÒ˹¯ºÒÏmËËÓÒ«m‚²º¹Ë¯Èˆº¯ºm¹Ë¯m©®ÒÏ}ºˆº¯©²º¯ˆººÓÈã Ó©®
                     È mˆº¯º®  °ÎȈÒË ¹º m‚ä mÏÈÒäÓº ¹Ë¯¹ËÓÒ}‚㫯өä Óȹ¯ÈmãËÓÒ«ä
                     äȈ¯ÒÈ}ºˆº¯ººÒȺÓÈã ÓÈ«
          
               ° {°ã‚ÈËm©¯ºÎËÓÓººº¹Ë¯Èˆº¯È A ¯ÈÏãºÎËÓÒËÈÓÈãºÒӺ˂}ÈÏÈÓ
                          Óºä‚ m ˆËº¯ËäË  ° Ó˺ˆ¯ÒȈËã Ó©äÒ °º­°ˆmËÓÓ©äÒ ÏÓÈËÓÒ«äÒ
                             °È亰º¹¯«ÎËÓÓººº¹Ë¯Èˆº¯È R °‚Ë°ˆm‚ˈÓºÓËËÒÓ°ˆmËÓÓº
               
               
    ~ÈÈÈ          Ætnrvzvévuvézvtvéuqévkjttvuijoqxnk E 2 sqtnpt€pvwnéjzvé A qun
    
                                                        2       −1
                     nzujzéq|y Aˆ =                                    Ëjpzqnmvwvs¹étvnéjosv ntqn
                                                        0        2

cËËÓÒË

° {©¹ºãÓÒä Ò°}ºäºË ¯ÈÏãºÎËÓÒË ¹º °²ËäË Ò°¹ºã ϺmÈÓÓº® m º}ÈÏȈËã °ˆmË
         ˆËº¯Ëä©  lȈ¯ÒÈ º¹Ë¯Èˆº¯È A + A  m Ò°²ºÓºä º¯ˆºÓº¯äÒ¯ºmÈÓÓºä ­ÈÏÒ°Ë
         ¯ÈmÓÈ
                                                                T                  2       0          2        −1                     2 − 2
                             Aˆ + Aˆ = Aˆ +       Aˆ = Aˆ               Aˆ =                                         =                                
                                                                               −1             2       0         2            − 2                  3

         vº­°ˆmËÓÓ©ËÏÓÈËÓÒ«Ò°º­°ˆmËÓÓ©ËmË}ˆº¯©ªˆººº¹Ë¯Èˆº¯È¯ÈmÓ©°ººˆmˈ°ˆ
         mËÓÓº
                                                                                       2                            −1
                                     λ1 = 1 ; λ2 = 4 ;                  f1 =               ;          f2 =                   
                                                                                       1                            2
                                             
         ¹ºªˆºä‚ °º²¯ÈÓ««º­ºÏÓÈËÓÒ«Ò°¹ºã ϺmÈÓÓ©Ëmº}ÈÏȈËã °ˆmˈ˺¯Ëä© 
         ¹ºã‚Òä㫪ãËäËӈºmº­¯Èς Ò²º¯ˆºÓº¯äÒ¯ºmÈÓÓ©Ë­ÈÏÒ°© {e1 , e2 } 
         
                                                                 2                                                                1
                                                                                                                         −
                                                   f1            3                                        f2                      3
                                      e1 =                  =              ;               e2 =                 =                         
                                                   f1           1                                         f2
                                                                                                                              2
                                                                    3                                                         3
         Ò {e1′ , e2′ } 
         
                                              1                                                                                               1                    2
                                                                                                                                      −                    −
                             1    
                                              3                                1                     1         2    −1                       3                    3
               e1′ =              Ae1 =                 ;       e2′ =                  Ae         =                                               =                    
                             λ1                                                λ2
                                                                                          2
                                                                                                      2        0         2                                     1
                                              2                                                                                               2
                                              3                                                                                               3                3