Аналитическая геометрия и линейная алгебра. Умнов А.Е. - 267 стр.

UptoLike

Составители: 

Рубрика: 

cÈÏËã
 

pm}ãÒºmº¹¯º°¯ÈÓ°mº
° |ºÏÓÈÒm ˯ËÏ
G
=
2
3
1
3
1
3
2
3
Ò
F
=
1
3
2
3
2
3
1
3
°ººmË°mËÓÓºäÈ
¯Ò©¹Ë¯Ë²ºÈºÒ°²ºÓººÈÏÒ°È}ÈÏÒ°Èä
{, }ee
12
Ò
{, }
′′
ee
12
Ò¯È°°ÎÈ«È}
ÎË}È}¹¯Ò¯ËËÓÒÒÏÈÈÒ¹ºãÒäã«äÈ¯Ò©º¯ººÓÈãÓººº¹Ë¯Èº¯È
Q
m©¯ÈÎËÓÒË
QGF
=
1

Ò©mÈ« º äÈ¯ÒÈ
G
º¯ººÓÈãÓÈ« }È} äÈ¯ÒÈ ¹Ë¯Ë²ºÈ °m«Ï©mÈÈ«
mÈº¯ºÓº¯äÒ¯ºmÈÓÓ©²ÈÏÒ°ÈÓȲºÒääÈ¯Ò
T
QGFGF
===
=
1
2
3
1
3
1
3
2
3
1
3
2
3
2
3
1
3
22
3
1
3
1
3
22
3

}ºº¯È«mÒ°²ºÓºäº¯ºÓº¯äÒ¯ºmÈÓÓºäÈÏÒ°Ëº¯ººÓÈãÓÈ«
° º°}ºã}

RQA=
1
º
,
3
5
3
2
3
2
3
4
20
12
3
22
3
1
3
1
3
22
ˆˆˆˆˆˆ
ˆ
T1
1
=
====
AQAQAQR
Ò°ã˺mÈËãÓºÒ°}ºäºË¹ºã«¯ÓºË¯ÈÏãºÎËÓÒËÒäËËmÒ
3
5
3
2
3
2
3
4
3
22
3
1
3
1
3
22
ˆ
ˆˆ
==
RQA

cÈÏËã
pm}ãÒºmº¹¯º°ˆ¯ÈÓ°ˆmº



                                                        2          1                                1            2
                                                              −                                          −
                                                        3          3                                3            3
° |­ºÏÓÈÒm˯ËÏ G =                                                 Ò F =                                           °ººˆmˈ°ˆmËÓÓºäȈ
                                                      12        1  2
                                3                      3         3 3
        ¯Ò©¹Ë¯Ë²ºÈºˆÒ°²ºÓºº­ÈÏÒ°È}­ÈÏÒ°Èä {e1 , e2 } Ò {e1′ , e2′ } үȰ°‚ÎÈ«ˆÈ}
        ÎË}È}¹¯Ò¯Ë ËÓÒÒÏÈÈÒ¹ºã‚Òäã«äȈ¯Ò©º¯ˆººÓÈã Óººº¹Ë¯Èˆº¯È
                                                   −1
         Q m©¯ÈÎËÓÒË Q = G                              F 
        
        
        ҈©mÈ« ˆº äȈ¯ÒÈ G  º¯ˆººÓÈã ÓÈ« }È} äȈ¯ÒÈ ¹Ë¯Ë²ºÈ °m«Ï©mÈ È«
        mȺ¯ˆºÓº¯äÒ¯ºmÈÓÓ©²­ÈÏÒ°È ÓȲºÒääȈ¯Ò‚
        
                                                                           2            1           1            2                    2 2           1
                                                                                                         −                                      −
                                   −1
                                                                           3            3           3            3                     3            3
                    Q = G
                                                        T
                                        F = G                F =                                                             =                          
                                                                           1            2           2        1                         1        2 2
                                                                       −
                                                                            3           3           3        3                         3         3
                                             
        }ºˆº¯È«mÒ°²ºÓºäº¯ˆºÓº¯äÒ¯ºmÈÓÓºä­ÈÏҰ˺¯ˆººÓÈã ÓÈ«
        
        
° º°}ºã }‚ R = Q −1 A ˆº
                                                                               2 2              1                                     4          2
                                                                                                                                            −
                                          −1                   T                3               3        2       −1                   3         3
         Rˆ = Qˆ −1         Aˆ = Qˆ             Aˆ = Qˆ            Aˆ =                                                      =                               
                                                                                    1       2 2         0            2                 2            5
                                                                                −                                                −                       ,
                                                                                    3        3                                        3             3
        
        
        Ò°ã˺mȈËã ÓºÒ°}ºäºË¹ºã«¯ÓºË¯ÈÏãºÎËÓÒËÒäËˈmÒ
        
        
                                                                           2 2              1           4                2
                                                                                        −                    −
                                                                            3               3           3                3
                                             Aˆ = Qˆ           Rˆ =                                                              
                                                                            1           2 2             2                5
                                                                                                    −
                                                                            3            3              3                3