Аналитическая геометрия и линейная алгебра. Умнов А.Е. - 269 стр.

UptoLike

Составители: 

Рубрика: 

cÈÏËã


ÓÒȯӺË¹¯º°¯ÈÓ°mº
Óº ºÈ ãÒº
ia ia
 ãÒº
aa
ÓË ¹ºãºÎÒËãÓº Ò È}°ÒºäÈ ° ÓË Ë
°¹¯ÈmËãÒmº®
{°ãÈËÎË¯ÈmËÓ°mÈ
ab ba
=
m©Óº°
λ
ÒϹºÏÓÈ}Èmº¯ºº°ºäÓºÎÒ
Ëã«°}È㫯Ӻº¹¯ºÒÏmËËÓÒ«m©¹ºãÓ«Ë°«ÒÓÈË
a b ba ba ba ab
λλ λ λ λ
====

¹º°}ºã}
λλ
=
Òºm¯È°°äÈ¯ÒmÈËäºä¹¯Òä˯Ë¹¯ÒmºÒ}¯ÈmËÓ°m
ia ia i i a a a a==

}ºº¯ºË°ºãȰË°«°È}°Òºäº®
°

¯Òä˯

° ¯º°¯ÈÓ°mº
n
ä˯ө² °ºãºm
nn
ba
η
η
η
ξ
ξ
ξ
...
;
...
2
1
2
1
==
 Ë
],1[;, ni
ii
=
η
ξ
 }ºä¹ãË}°Ó©Ë Ò°ãÈ °º °}È㫯өä
¹¯ºÒÏmËËÓÒËä º¹¯ËËã«Ëä©ä ¹º Áº¯äãË
ab
i
i
i
n
=
=
ξ
η
1

«mã«Ë°«ÓÒȯөä
°
 ÓÒȯөäË¹¯º°¯ÈÓ°mºÓ˹¯Ë¯©mÓ©²ÓÈ
[,]
αβ
}ºä¹ãË}°
ÓºÏÓÈÓ©² ÁÓ}Ò® °º °}È㫯өä ¹¯ºÒÏmËËÓÒËä
ab abd=
()()
τττ
α
β

{ ÓÒȯө² ¹¯º°¯ÈÓ°mȲ }È} ¹¯ÈmÒãº ÒäË °Òã º¹¯ËËãËÓÒ«Ò ˺¯Ëä©
°¹¯ÈmËãÒm©Ë ã« Ëm}ãÒºmÈ ¹¯º°¯ÈÓ°mÈ sȹ¯Òä˯ Ó˯ÈmËÓ°mº Ò
rÓ«}ºm°}ººÒäËËmÒ
aa bb ab ba

iË®°mÒËãÓº
aa bb ab ab ab ab ba≥= =
2
ã«
∀∈ab U,

cÈÏËã
Ó҈ȯӺ˹¯º°ˆ¯ÈÓ°ˆmº



                    Óº ˆºÈ ãÒ­º ia ia  ãÒ­º a a  ÓË ¹ºãºÎ҈Ëã Óº Ò È}°ÒºäÈ ° ÓË ­‚ˈ
                    °¹¯ÈmËãÒmº®
                    
                    {°ã‚ÈËÎ˯ÈmËÓ°ˆmÈ a b = b a m©Óº° λ ÒϹºÏÓÈ}Èmˆº¯ºº°ºäÓºÎÒ
                    ˆËã«°}È㫯Ӻº¹¯ºÒÏmËËÓÒ«m©¹ºãӫˈ°«ÒÓÈË
                    
                                                       a λb = λb a = λ b a = λ b a = λ a b 
                    
                    ¹º°}ºã }‚ λ = λ Òˆºm¯È°°äȈ¯ÒmÈËäºä¹¯Òä˯˹¯Òmº҈}¯ÈmËÓ°ˆm‚
                    
                                                                     ia ia = i i a a = a a 
                    
                    }ºˆº¯ºË°ºãȰ‚ˈ°«°È}°Òºäº®°
                    
                    
                    
 ¯Òä˯                                                                                                       ξ1                    η1
 
                                                                                                               ξ                     η2
                        °      ¯º°ˆ¯ÈÓ°ˆmº                nä˯ө²               °ˆºã­ºm           a= 2 ; b=                          Ë
                                                                                                               ...                   ...
                                                                                                               ξn                    ηn
                                   ξ i ,ηi ; i = [1, n]                   }ºä¹ãË}°Ó©Ë                Ò°ãÈ          °º       °}È㫯өä
                                                                                                                                           n
                                   ¹¯ºÒÏmËËÓÒËä                 º¹¯ËËã«Ëä©ä                ¹º      Áº¯ä‚ãË               a b = ∑ ξ i ηi 
                                                                                                                                          i =1
                                   «mã«Ëˆ°«‚Ó҈ȯөä
                        
                        °      Ó҈ȯөä­‚ˈ¹¯º°ˆ¯ÈÓ°ˆmºÓ˹¯Ë¯©mÓ©²ÓÈ [α , β ] }ºä¹ãË}°
                                   ÓºÏÓÈÓ©²   Á‚Ó}Ò®     °º    °}È㫯өä      ¹¯ºÒÏmËËÓÒËä
                                                β
                                     a b = ∫ a (τ ) b(τ ) dτ 
                                               α
                         
       
       
       { ‚Ó҈ȯө² ¹¯º°ˆ¯ÈÓ°ˆmȲ }È} ¹¯ÈmÒ㺠ÒäË ˆ °Òã‚ º¹¯ËËãËÓÒ« Ò ˆËº¯Ëä©
°¹¯ÈmËãÒm©Ë ã« Ëm}ãÒºmÈ ¹¯º°ˆ¯ÈÓ°ˆmÈ sȹ¯Òä˯ Ó˯ÈmËÓ°ˆmº zº Ò
r‚Ó«}ºm°}ººÒäËˈmÒ
       
                                      a a b b ≥ a b b a 
       
       
       iË®°ˆm҈Ëã Óº
       
                                                          2
                             a a bb ≥ ab                      = a b a b = a b b a ã« ∀a, b ∈U