Аналитическая геометрия и линейная алгебра. Умнов А.Е. - 271 стр.

UptoLike

Составители: 

Рубрика: 

cÈÏËã


ÓÒȯӺË¹¯º°¯ÈÓ°mº
|¹¯ËËãËÓÒË

ÒÓˮө® º¹Ë¯Èº¯
A
 Ë®°mÒ® m ÓÒȯӺä ¹¯º°¯ÈÓ°mË
U

ÓÈÏ©mÈË°« ytqzjétu ÒãÒ qovunzéq·nxrqu ˰ãÒ
∀∈ab U,
ÒäËË
ä˰º¯ÈmËÓ°mº

Aa Ab a b=

~ÈäËÈÓÒË
 ÓÒȯө® ãÒÓˮө® º¹Ë¯Èº¯Ë®°mÒ®m}ºÓËÓºä˯ӺäÓÒȯӺä
¹¯º°¯ÈÓ°mË
U
n
mº¯ºÓº¯äÒ¯ºmÈÓÓºäÈÏÒ°ËÒäËËÓÒȯÓäÈ¯Ò
|¹¯ËËãËÓÒË

ÒÓˮө® º¹Ë¯Èº¯
A
+
 Ë®°mÒ® m ÓÒȯӺä ¹¯º°¯ÈÓ°mË
U

ÓÈÏ©mÈË°« ëéuqzvkv xvwé¹nttu ãÒÓˮӺä º¹Ë¯Èº¯
A
 ˰ãÒ ã«
∀∈
ab U
,
ÒäËËä˰º¯ÈmËÓ°mº

Aa b a A b
=
+

˺¯ËäÈ

iã« ãÒÓˮө² º¹Ë¯Èº¯ºm
A
Ò
B
 Ë®°mÒ² m ÓÒȯӺä ¹¯º
°¯ÈÓ°mË
U
°¹¯ÈmËãÒm©°ººÓºËÓÒ«
(

)

AB B A
+++
=
Ò
(
)
λλ
AA
++
=

iº}ÈÏÈËã°mº
iº}ÈÎËä¹Ë¯mºË°ººÓºËÓÒË
jäËËä
(

)

,,
AB a b Ba A b a B A b a b U
==
+++
|°È¹ºãÈËä¹ºº¹¯Ë
ËãËÓÒº
(

)

AB B A
+++
=

kÓÈãºÒÓº
(
)

,,
λλ λ λ
Aab Aab aA b a A b ab U== =
++
ã« ãºº
}ºä¹ãË}°ÓººÒ°ãÈ
λ

˺¯ËäÈº}ÈÏÈÓÈ
iã« ª¯äÒºm°}Ò °º¹¯«ÎËÓÓ©² º¹Ë¯Èº¯ºm Ë®°mÒ² m }ºÓËÓºä˯Ӻä
¹¯º°¯ÈÓ°mË
U
n
ÒäËËä˰º
˺¯ËäÈ

lÈ¯ÒÈ º¹Ë¯Èº¯È
A
+

ª¯äÒºmº °º¹¯«ÎËÓÓºº º¹Ë¯Èº¯
A
m
U
n
 m
ÈÏÒ°Ë
},...,,{
21
n
ggg
º¹¯ËËã«Ë°«°ººÓºËÓÒËä

T
AA
g
g
+
=
ΓΓ
1

cÈÏËã
Ó҈ȯӺ˹¯º°ˆ¯ÈÓ°ˆmº



    |¹¯ËËãËÓÒË          ÒÓˮө® º¹Ë¯Èˆº¯ A  Ë®°ˆm‚ Ò® m ‚Ó҈ȯӺä ¹¯º°ˆ¯ÈÓ°ˆmË U
                  ÓÈÏ©mÈˈ°« ytqzjét€u ÒãÒ qovunzéq·nxrqu  ˰ãÒ ∀a , b ∈U  ÒäËˈ
                                            Ab
                          ä˰ˆº¯ÈmËÓ°ˆmº Aa  = a b 
             
             
~ÈäËÈÓÒË Ó҈ȯө® ãÒÓˮө® º¹Ë¯Èˆº¯ Ë®°ˆm‚ Ò® m }ºÓËÓºä˯Ӻä ‚Ó҈ȯӺä
                    ¹¯º°ˆ¯ÈÓ°ˆmË U n mº¯ˆºÓº¯äÒ¯ºmÈÓÓºä­ÈÏÒ°ËÒäËˈ‚Ó҈ȯӂ äȈ¯Ò‚
             
             
             
    |¹¯ËËãËÓÒË          ÒÓˮө® º¹Ë¯Èˆº¯ A +  Ë®°ˆm‚ Ò® m ‚Ó҈ȯӺä ¹¯º°ˆ¯ÈÓ°ˆmË U
    
                          ÓÈÏ©mÈˈ°« ëéuqzvkv xvwé¹ ntt€u ãÒÓˮӺä‚ º¹Ë¯Èˆº¯‚ A  ˰ãÒ ã«
                                                            b = a A + b 
                          ∀a, b ∈U ÒäËˈä˰ˆº¯ÈmËÓ°ˆmº Aa
             
             
             
    ‘˺¯ËäÈ             iã« ãÒÓˮө² º¹Ë¯Èˆº¯ºm A  Ò B  Ë®°ˆm‚ Ò² m ‚Ó҈ȯӺä ¹¯º
                                                            ) + = B + A + Ò ( λA ) + = λ A + 
                         °ˆ¯ÈÓ°ˆmËU°¹¯ÈmËãÒm©°ººˆÓºËÓÒ« ( AB

  iº}ÈÏȈËã°ˆmº
   
   
      iº}ÈÎËä¹Ë¯mºË°ººˆÓº ËÓÒË
      
                      )a b = Ba
           jäËËä ( AB          A + b = a B + A + b ,                          ∀a , b ∈U |ˆ° ȹºã‚ÈË乺º¹¯Ë
                                     ) + = B + A + 
           ËãËÓÒ ˆº ( AB
           
           kÓÈãºÒÓº               ( λA )a b = λ Aa
                                                     b = λ a A + b = a λ A + b , ∀a , b ∈U  ã« ã ­ºº

           }ºä¹ãË}°ÓººÒ°ãÈλ 
      
      
      ‘˺¯ËäȺ}ÈÏÈÓÈ
             
             
             
             iã« ª¯ä҈ºm°}Ò °º¹¯«ÎËÓÓ©² º¹Ë¯Èˆº¯ºm Ë®°ˆm‚ Ò² m }ºÓËÓºä˯Ӻä
¹¯º°ˆ¯ÈÓ°ˆmË U n ÒäËˈä˰ˆº
       
       
    ‘˺¯ËäÈ         lȈ¯ÒÈ º¹Ë¯Èˆº¯È A +  ª¯ä҈ºmº °º¹¯«ÎËÓÓºº º¹Ë¯Èˆº¯‚ A  m U n  m
    
                     ­ÈÏÒ°Ë {g1 , g 2 ,..., g n } º¹¯ËËã«Ëˆ°«°ººˆÓºËÓÒËä
                                                                                      −1         T
                                                                    A +   g
                                                                               = Γ          A   g
                                                                                                     Γ