Аналитическая геометрия и линейная алгебра. Умнов А.Е. - 270 стр.

UptoLike

Составители: 

Рубрика: 


Ë} ÒÒ}ÈÁË ¯©m©° Ë®äÈËäÈÒ}Òlnj
ÙkÓÈãÒÒ˰}È«˺äË¯Ò«ÒãÒÓË®ÓÈ«ÈãË¯Èµ

äÓºmkp
{}ºÓËÓºä˯ӺäÓÒȯӺä¹¯º°¯ÈÓ°mË
U
n
ÈÏÒ°
},...,,{
21
n
ggg
¹¯ÒÓ˺²º
Ò亰ÒäºÎË©º¯ººÓÈãÒÏÒ¯ºmÈÓ¹º°ÈÓȯÓº®°²ËäË{©¯ÈÎËÓÒËã«°}È㫯
Óºº¹¯ºÒÏmËËÓÒ«m}ºº¯ÒÓÈȲÈÓÈãºÒÓºËm}ãÒºm°}ºä°ãÈÒÒäËËmÒ
ab
gg gg gg
gg gg gg
gg gg gg
n
n
n
n
n
nn nnn
==
=
ξ
ξ
ξ
η
η
η
ξ
ξ
ξ
η
η
η
12
1
2
12
11 12 1
21 22 2
12
1
2
...
...
...
...
...
... ... ... ...
...
...
,
Γ
Ë
Γ
ujzéq|j éjuj m ÓÒȯӺä ¹¯º°¯ÈÓ°mË
U
n
 ~ÈäËÒä º ¹º°}ºã}
gg gg
ij ji
=
ºÒäËËä˰º¯ÈmËÓ°mº
ΓΓ
T
=

|¹¯ËËãËÓÒË

lÈ¯ÒÈ
A
ºmãËmº¯«È«°ººÓºËÓÒ
AA
T
=
ÓÈÏ©mÈË°«
ëéuqzvkvp
lÈ¯ÒÈ
A
 ºmãËmº¯«È« °ººÓºËÓÒ«ä
AA E
T
=
Ò
EAA
=
T
ÓÈÏ©mÈË°«ytqzjétvp
|¹¯ËËãÒËã ÓÒȯӺ® äÈ¯Ò© ˰ }ºä¹ãË}°ÓºË Ò°ãº äºã }ºº¯ºº
¯ÈmËÓËÒÓÒËiË®°mÒËãÓº
det ( ) det det det det det det
TT
AA A A A A A E
=====
2
1

ÒÓˮөËº¹Ë¯Èº¯©mÓÒȯӺä¹¯º°¯ÈÓ°mË
iã«ÓÒȯӺº¹¯º°¯ÈÓ°mÈ°¹¯ÈmËãÒm©º¹¯ËËãËÓÒ«mmËËÓÓ©Ëã«ãÒÓË®
Ó©²º¹Ë¯Èº¯ºmm¯ÈÏËãË10{ÈÓÓºä¹Ó}Ë¯È°°äº¯ËÓ©ãÒ°¹ËÒÁÒ˰}ÒË
º°ºËÓÓº°ÒãÒÓˮө²º¹Ë¯Èº¯ºmË®°mÒ²mÓÒȯӺä¹¯º°¯ÈÓ°mË
 Ë }  Ò Ò    } È Á Ë  ¯ ©   m © °  Ë ®   ä È ˆ Ë ä È ˆ Ò } Ò   l n ‘ j 
ÙkÓÈã҈Ò˰}È«˺äˈ¯Ò«ÒãÒÓË®ÓÈ«ÈãË­¯ÈµäÓºmkp



       {}ºÓËÓºä˯Ӻä‚Ó҈ȯӺ乯º°ˆ¯ÈÓ°ˆmË U n ­ÈÏÒ° {g1 , g 2 ,..., g n } ¹¯ÒÓ˺­²º
Ò亰ˆÒäºÎˈ­©ˆ º¯ˆººÓÈãÒÏÒ¯ºmÈÓ¹º°ˆÈÓȯˆÓº®°²ËäË{©¯ÈÎËÓÒËã«°}È㫯
Óºº¹¯ºÒÏmËËÓÒ«m}ºº¯ÒÓȈȲÈÓÈãºÒÓºËm}ãÒºm°}ºä‚°ã‚È ÒÒäËˈmÒ
       
                                                                     η1
                                                                     η2
                       a b = ξ1 ξ 2              ... ξ n       Γ         =
                                                                     ...
                                                                     ηn
                                                                                                                                 
                                                                 g1 g1         g1 g 2       ...     g1 g n        η1
                                                                 g 2 g1        g2 g2        ...    g2 gn          η2
                               = ξ1 ξ 2           ... ξ n                                                                    ,
                                                                   ...          ...         ...     ...           ...
                                                                 g n g1        gn g2        ...    gn gn          ηn
            
            
Ë Γ   ujzéq|j ­éjuj m ‚Ó҈ȯӺä ¹¯º°ˆ¯ÈÓ°ˆmË U n  ~ÈäˈÒä ˆº ¹º°}ºã }‚
                                                                              T
  g i g j = g j g i ˆºÒäËˈä˰ˆº¯ÈmËÓ°ˆmº Γ                                 = Γ 
            
            
            
                                                                                                             T
 |¹¯ËËãËÓÒË            lȈ¯ÒÈ A ‚ºmãˈmº¯« È«°ººˆÓº ËÓÒ  A                                              = A ÓÈÏ©mÈˈ°«
 
                         ëéuqzvkvp
                                                                                                                        T
                         lȈ¯ÒÈ            A  ‚ºmãˈmº¯« È« °ººˆÓº ËÓÒ«ä                                    A            A = E  Ò
                                     T
                           A     A       = E ÓÈÏ©mÈˈ°«ytqzjétvp
       
       
       
       |¹¯ËËã҈Ëã  ‚Ó҈ȯӺ® äȈ¯Ò© ˰ˆ  }ºä¹ãË}°ÓºË Ò°ãº äº‚ã  }ºˆº¯ºº
¯ÈmËÓËÒÓÒËiË®°ˆm҈Ëã Óº
       
       
                                 T                        T                                                        2
                    det ( A          A ) = det A              det A = det A det A = det A                               = det E = 1 
            
            
            
            
ÒÓˮө˺¹Ë¯Èˆº¯©m‚Ó҈ȯӺ乯º°ˆ¯ÈÓ°ˆmË
       
       
       
       iã«‚Ó҈ȯӺº¹¯º°ˆ¯ÈÓ°ˆmȰ¹¯ÈmËãÒm©º¹¯ËËãËÓÒ«mmËËÓÓ©Ëã«ãÒÓË®
Ó©²º¹Ë¯Èˆº¯ºmm¯ÈÏËãË10{ÈÓӺ乂Ó}ˆË­‚‚ˆ¯È°°äºˆ¯ËÓ©ãÒ °¹ËÒÁÒ˰}ÒË
º°º­ËÓÓº°ˆÒãÒÓˮө²º¹Ë¯Èˆº¯ºmË®°ˆm‚ Ò²m‚Ó҈ȯӺ乯º°ˆ¯ÈÓ°ˆmË