Аналитическая геометрия и линейная алгебра. Умнов А.Е. - 268 стр.

UptoLike

Составители: 

Рубрика: 


Ë} ÒÒ}ÈÁË ¯©m©° Ë®äÈËäÈÒ}Òlnj
ÙkÓÈãÒÒ˰}È«˺äË¯Ò«ÒãÒÓË®ÓÈ«ÈãË¯Èµ

äÓºmkp
cÈÏËã
sjkcs|pc|vcksv{|
|¹¯ËËãËÓÒËÓÒȯӺº¹¯º°¯ÈÓ°mÈ
|¹¯ËËãËÓÒË

°m}ºä¹ãË}°ÓºäãÒÓˮӺä¹¯º°¯ÈÓ°mË
U
}Èκ®¹º¯«ºËÓÓº®
¹È¯Ë ªãËäËÓºm
a
Ò
b
¹º°ÈmãËÓº m °ººmË°mÒË }ºä¹ãË}°ÓºË
 Ò°ãº
ab
,
ÓÈÏ©mÈËäºËÒ²xrjs¹étu wévqoknlntqnu È} º m©¹ºãÓËÓ©
È}°Òºä©
°
ab ba
=

°
λλ
ab ab
=

°
aab ab ab
12 1 2
+=+

°
aa
 mË˰mËÓÓºË Ó˺¯ÒÈËãÓºË Ò°ãº ¹¯ÒËä
aa a o
=⇔=
0
ºÈºmº¯«ºÏÈÈÓºytqzjétvnwévxzéjtxzkv
iã«ººÏÓÈËÓÒ«°}È㫯Ӻº¹¯ºÒÏmËËÓÒ«mÓÒȯӺä¹¯º°¯ÈÓ°mËä©Ëä
Ò°¹ºãϺmÈ ÓË }¯ã©Ë °}º}Ò ¹¯ÒÓ«©Ë m Ëm}ãÒºmºä ¹¯º°¯ÈÓ°mË È °}º}Ò Ò¹È
Ùiéërnzµ
~ÈäËÈÓÒË
È}°Òºä© ° ¹ºÏmºã«Ë ÒÏËÎÈ ¹¯ºãËä© }ºº¯È« mºÏÓÒ}ÈË m °ãÈË
Ò°¹ºãϺmÈÓÒ«Ëm}ãÒºm°}ºº¹¯ÈmÒãÈ}ºääÈÒmÓº°Ò°}È㫯Ӻº¹¯ºÒÏ
ËÓÒ«ã«}ºä¹ãË}°Ó©²ãÒÓˮө²¹¯º°¯ÈÓ°m
iË®°mÒËãÓº˰ãÒ¹¯ÒÓ«º
ab ba
=
º
ab ab
λλ
=
ÒºËmÒÓº
º¹¯ÒÓË}ºº¯ºäÓËÓãËmºä
a
Ò
λ
i
ia ia i i a a i a a i a a a a
====()() ( )
22


|¹¯ËËãËÓÒËÒº°ÓºmÓ©Ë°mº®°mÈ}ºä¹ãË}°Ó©²Ò°Ëã¹¯Òmº«°«m¹¯ÒãºÎËÓÒÒ
 Ë }  Ò Ò    } È Á Ë  ¯ ©   m © °  Ë ®   ä È ˆ Ë ä È ˆ Ò } Ò   l n ‘ j 
ÙkÓÈã҈Ò˰}È«˺äˈ¯Ò«ÒãÒÓË®ÓÈ«ÈãË­¯ÈµäÓºmkp



          
          
          
          
          
          
          
cÈÏËã
sj‘kcs|pc|v‘cksv‘{|
              
              
              
              
|¹¯ËËãËÓÒË‚Ó҈ȯӺº¹¯º°ˆ¯ÈÓ°ˆmÈ
              
              
              
                         

 |¹¯ËËãËÓÒË            ‚°ˆ m}ºä¹ãË}°ÓºäãÒÓˮӺ乯º°ˆ¯ÈÓ°ˆmË U}Èκ®‚¹º¯«ºËÓÓº®
 
                         ¹È¯Ë ªãËäËӈºm a Ò b ¹º°ˆÈmãËÓº m °ººˆmˈ°ˆmÒË }ºä¹ãË}°ÓºË  Ò°ãº
                          a b , ÓÈÏ©mÈËäºË Ò² xrjs¹ét€u wévqoknlntqnu ˆÈ} ˆº m©¹ºãÓËÓ©
                         È}°Òºä©
                                          ° a b = b a 
                                          ° λ a b = λ a b 
                                          ° a1 + a 2 b = a1 b + a 2 b 
                                          ° a a   m˝˰ˆmËÓÓºË Ó˺ˆ¯ÒȈËã ÓºË Ò°ãº ¹¯ÒËä
                                                  aa =0           ⇔        a = o
                                          

                         ˆºÈºmº¯«ˆˆºÏÈÈÓºytqzjétvnwévxzéjtxzkv
          
          
       i㫺­ºÏÓÈËÓÒ«°}È㫯Ӻº¹¯ºÒÏmËËÓÒ«m‚Ó҈ȯӺ乯º°ˆ¯ÈÓ°ˆmËä©­‚Ëä
Ò°¹ºã ϺmȈ  ÓË }¯‚ã©Ë °}º­}Ò ¹¯ÒÓ«ˆ©Ë m Ëm}ãÒºmºä ¹¯º°ˆ¯ÈÓ°ˆmË È °}º­}Ò ˆÒ¹È
Ùiéërnzµ
       
       
~ÈäËÈÓÒË mÒ È}°Òºä© ° ¹ºÏmºã«Ëˆ ÒÏ­ËÎȈ  ¹¯º­ãËä© }ºˆº¯È« mºÏÓÒ}Èˈ m °ã‚ÈË
            Ò°¹ºã ϺmÈÓÒ«Ëm}ãÒºm°}ºº¹¯ÈmÒãÈ}ºä䂈ȈÒmÓº°ˆÒ°}È㫯Ӻº¹¯ºÒÏ
            mËËÓÒ«ã«}ºä¹ãË}°Ó©²ãÒÓˮө²¹¯º°ˆ¯ÈÓ°ˆm

                   iË®°ˆm҈Ëã Óº˰ãÒ¹¯ÒÓ«ˆ ˆº a b = b a ˆº a λb = λ a b ÒºËmÒÓº
                   ˆº¹¯ÒÓË}ºˆº¯ºäÓËӂãËmºäaÒλ                             i
                   
                                              ia ia = ( i )( i ) a a = ( −i ) 2 a a = i 2 a a = − a a 
                   


     |¹¯ËËãËÓÒËÒº°Óºmө˰mº®°ˆmÈ}ºä¹ãË}°Ó©²Ò°Ë㹯Òmº«ˆ°«m¹¯ÒãºÎËÓÒÒ