Программирование на языке С++. Викентьева О.Л - 19 стр.

UptoLike

19
2
y
x
=−ln sin2
2
π
π
5
9
5
≤≤x
40
Sx
xnx
n
=+ ++cos
cos
.....
cos2
2
3
yX= sin
01 1,
x
10
Sx
xx
n
n
n
=− ++
+
+321
3
1
21!
.... ( )
()!
4
y
X
arctg
X
x
=
−+ln 1
2
01 08,,
x
10
S
xx x
nn
n
n
=−++
+
24
1
2
212
1
22 1
... ( )
()
5
ye
x
=
12
x
15
S
xx x
n
n
=+ + + +1
12
2
!!
.....
!
6
ye
x
x
=⋅
cos
cos( sin )
π
π
4
4
01 1,
x
25
Sx
n
n
x
n
=+ + +1
4
1
4
cos
!
....
cos
!
π
π
7
y
= co
s
01 1,
x
10
S
xx
n
n
n
=− + +1
2
1
2
22
!
.... ( )
()!
8
y
x
xx
=
−+
sin
cos
π
π
4
12
4
2
01 08,,
x
40
Sx x x n
n
=+ ++sin sin .... sin
π
π
π
4
2
44
2
9
y
x
x
arctgX
=
+
+
+
1
4
1
1
1
2
ln
01 08,,
x
3
Sx
xx
n
n
=+ + +
+
+541
541
.....
10
ye x
x
=
cos
cos(sin )
01 1,
x
20
S
xnx
n
=+ + +1
1
cos
!
....
cos
!
11
yxe
x
=+()12
2
2
01 1,
x
10
Sx
n
n
x
n
=+ + +
+
13
21
22
.....
!
12
y
xx
=−
−+
1
2
1
2
3
2
ln(
cos )
π
01 08,,
x
35
S
xx xn
n
n
=+ ++
cos cos
....
cos
π
π
π
3
1
2
3
2
3
2
13
yx=
1
2
ln
02 1,
x
10
S
x
x
x
xn
x
x
=
+
+
+
++
+
+
1
1
1
3
1
1
1
21
1
1
3
( ) ..... (
)
14
yx=−
1
43
2
2
()
π
π
π
5
≤≤x
20
Sx
xnx
n
n
=− + + +cos
cos
.... ( )
cos2
2
1
22
15
y
x
arctgX
x
=
+
1
22
2
01 1,
x
30
S
xx x
n
n
n
=−++
+
+
35
1
21
2
315
1
41
..... ( )
16
yx=−
ππ
2
84
π
π
5
≤≤x
40
Sx
xnx
n
=+ ++
cos
cos
...
cos( )
()
3
3
21
21
22
17
y
ee
xx
=
+
2
01 1,
x
10
S
xx
n
n
=+ + +1
22
22
!
....
()!
                                                                                                          19


2                         x       π          9π   40                     cos 2 x         cos nx
                                      ≤x≤              S = cos x +               +.....+
     y = − ln 2 sin               5           5
                          2                                                2               n
3    y = sin X                    0,1 ≤ x ≤ 1     10          x3                  x 2 n +1
                                                       S = x−    +....+ ( −1) n
                                                              3!                (2n + 1)!
4    y = XarctgX −                0,1 ≤ x ≤ 0,8   10      x2 x4                     x 2n
                                                                            n +1
                                                       S=   −   +...+ ( −1)
     − ln 1 + x 2                                         2 12                   2n(2n − 1)
5    y = ex                       1≤ x ≤ 2        15         x x2           xn
                                                       S = 1+ +     +.....+
                                                             1! 2 !         n!
6
     y=e
           x cosπ 4
                      ⋅           0,1 ≤ x ≤ 1     25                     π                     π
                                                                cos                    cos n
                                                                         4 x +....+            4 xn
     cos( x sin π 4 )                                  S = 1+
                                                                    1!           n!
7    y = cos x                    0,1 ≤ x ≤ 1     10          x     2
                                                                                 x 2n
                                                       S = 1−    +....+ ( −1) n
                                                              2!                (2n)!
8                  x sin π 4      0,1 ≤ x ≤ 0,8   40                π                  π                       π
                                                       S = x sin         + x 2 sin 2       +....+ x n sin n
     y=                                                             4                  4                       4
          1 − 2 x cos π 4 + x 2

9        1 1+ x                   0,1 ≤ x ≤ 0,8   3           x5         x 4 n +1
     y = ln           +                                S = x+    +.....+
         4 1− x                                               5          4n + 1
       1
     + arctgX
       2
10   y = e cos x cos(sin x )      0,1 ≤ x ≤ 1     20           cos x         cos nx
                                                       S = 1+         +....+
                                                                1!             n!
11   y = (1 + 2 x 2 )e x
                              2
                                  0,1 ≤ x ≤ 1     10                        2n + 1 2 n
                                                       S = 1 + 3x 2 +.....+        x
                                                                              n!
12        1                       0,1 ≤ x ≤ 0,8   35                π                      π                       π
     y = − ln(1 −                                           x cos             x 2 cos 2               x n cos n
          2                                            S=               3 +                3 +....+                3
                 π                                              1                  2                       n
     − 2 x cos        + x2 )
                 3
13        1                       0,2 ≤ x ≤ 1     10        x −1 1 x −1 3           1     x −1
     y=     ln x                                       S=       + (     ) +.....+       (      )
          2                                                 x +1 3 x +1           2n + 1 x + 1

14      1 2 π2            π                       20                         cos 2 x                cos nx
                             ≤ x≤π                     S = − cos x +                 +....+ ( −1) n
     y = (x −      )      5
        4        3                                                             2 2
                                                                                                     n2
15      1+ x 2
                        x 0,1 ≤ x ≤ 1             30        x3 x5                  x 2 n +1
     y=        arctgX −                                S=     − +.....+ ( −1) n +1 2
          2             2                                   3 15                  4n − 1

16        π2       π              π               40                     cos 3x       cos(2n − 1) x
                                      ≤x≤π             S = cos x +              +...+
     y=        −          x       5
         8 4                                                               3 2
                                                                                       (2n − 1) 2
17      e x + e−x                 0,1 ≤ x ≤ 1     10          x2         x 2n
     y=                                                S = 1+    +....+
            2                                                 2!        (2n)!