ВУЗ:
Составители:
Рубрика:
ν E
θ
ν < ∞.
I
θ, ϑ |X
(τ
ν
)
=
X
i ∈I
E
θ
ν
i
· I(θ, ϑ |ξ
i
). (3.5)
J (θ, ϑ |X)
ϑ, U (θ) ϑ = θ.
ρ
p ( X |θ ) = p
ρ,τ
ν
X
(τ
ν
)
|θ
=
ϕ
s
a
s
|X
(τ
ν
)
ν−1
Y
k=0
ϕ
s
a
c
|X
(τ
k
)
ϕ
c
τ
k+1
|X
(τ
k
)
·
ν
Y
k=0
f
ι
k
(X
ι
k
|θ).
I
θ, ϑ |X
(τ
ν
)
= E
θ
ln
p
ρ,τ
ν
X
(τ
ν
)
|θ
p
ρ,τ
ν
X
(τ
ν
)
|ϑ
= E
θ
ν
X
k=0
ln
f
ι
k
( X
ι
k
|θ , )
f
ι
k
( X
ι
k
|ϑ )
.
{χ
i |x
(τ
n−1
)
, i ∈ I}, n = 1, 2, . . .
χ
i |x
(t
n−1
)
= 1, (n−1)
x
(t
n−1
)
n
X
i
ξ
i
, χ
i |x
(t
n−1
)
=
0 χ
I
θ, ϑ |X
(τ
ν
)
=
∞
X
n=1
X
i ∈I
E
θ
χ
i |X
(t
n−1
)
ln
f
i
(X
i
|θ)
f
i
(X
i
|ϑ)
=
X
i ∈I
∞
X
n=1
E
θ
χ
i |X
(t
n−1
)
E
θ
ln
f
i
(X
i
|θ)
f
i
(X
i
|ϑ)
=
X
i∈I
∞
X
n=0
P
θ
(ν
i
> n) · I(θ, ϑ |ξ
i
)
ìîìåíò îñòàíîâêè ν êîòîðîãî êîíå÷åí: Eθ ν < ∞. Òîãäà
X
(τν )
I θ, ϑ | X = Eθ νi · I(θ, ϑ | ξi ). (3.5)
i ∈I
 ñëó÷àå ðåãóëÿðíûõ ñòàòèñòè÷åñêèõ ýêñïåðèìåíòîâ àíàëîãè÷íîå óòâåð-
æäåíèå ñïðàâåäëèâî äëÿ ôèøåðîâñêîé èíôîðìàöèè J (θ, ϑ | X) ïðè âñåõ
ϑ, ïðèíàäëåæàùèõ íåêîòîðîé îêðåñòíîñòè U (θ) òî÷êè ϑ = θ.
Ä î ê à ç à ò å ë ü ñ ò â î. Êàê è â ïðåäëîæåíèè 3.2, äîñòàòî÷íî äîêàçàòü ñïðà-
âåäëèâîñòü ôîðìóëû (3.5) òîëüêî äëÿ ðàçëè÷àþùåé èíôîðìàöèè.
Äëÿ ýêñïåðèìåíòà ñ óïðàâëåíèåì ρ
(τν )
p ( X | θ ) = p ρ,τν X |θ =
ν−1
Y Yν
(τν ) (τk ) (τk )
ϕ s as | X ϕ s ac | X ϕc τk+1 | X · fιk (Xιk | θ).
k=0 k=0
Ñëåäîâàòåëüíî, ðàçëè÷àþùàÿ èíôîðìàöèÿ
ν
p ρ,τν X(τν ) | θ X fιk ( Xιk | θ , )
I θ, ϑ | X(τν ) = Eθ ln = Eθ ln .
p ρ,τν X(τν ) | ϑ fιk ( Xιk | ϑ )
k=0
Îïðåäåëèì ïîñëåäîâàòåëüíîñòü ñåìåéñòâ èíäèêàòîðíûõ ôóíêöèé
(τn−1 )
{χ i | x , i ∈ I}, n = 1, 2, . . .
ïîëàãàÿ χ i | x(tn−1 ) = 1, åñëè ýêñïåðèìåíò íå áûë îñòàíîâëåí äî (n−1) -ãî
øàãà âêëþ÷èòåëüíî ñ ðåçóëüòàòîì x(tn−1 ) è áûëî ïðèíÿòî ðåøåíèå íà n -ì
øàãå íàáëþäàòü êîïèþ Xi ñëó÷àéíîãî ýëåìåíòà ξi , è ïîëàãàÿ χ i | x(tn−1 ) =
0 â ïðîòèâíîì ñëó÷àå.  òåðìèíàõ èíäèêàòîðíûõ ôóíêöèé χ ðàçëè÷àþùàÿ
èíôîðìàöèÿ ïðèíèìàåò âèä
X ∞ X f (X | θ)
(τν ) (tn−1 ) i i
I θ, ϑ | X = Eθ χ i | X ln =
fi (Xi | ϑ)
n=1 i ∈I
∞ ∞
XX
(tn−1 )
fi (Xi | θ) X X
Eθ χ i | X Eθ ln = Pθ (νi > n) · I(θ, ϑ | ξi )
fi (Xi | ϑ)
i ∈I n=1 n=0 i∈I
(â ñèëó êîíå÷íîñòè ìîìåíòà îñòàíîâêè ñóììû â ïðàâîé ÷àñòè ýòîãî ðàâåí-
ñòâà ìîæíî ïåðåñòàâëÿòü).
35
Страницы
- « первая
- ‹ предыдущая
- …
- 33
- 34
- 35
- 36
- 37
- …
- следующая ›
- последняя »
