ВУЗ:
Составители:
Рубрика:
ν E
θ
ν < ∞.
I
θ, ϑ |X
(τ
ν
)
=
X
i ∈I
E
θ
ν
i
· I(θ, ϑ |ξ
i
). (3.5)
J (θ, ϑ |X)
ϑ, U (θ) ϑ = θ.
ρ
p ( X |θ ) = p
ρ,τ
ν
X
(τ
ν
)
|θ
=
ϕ
s
a
s
|X
(τ
ν
)
ν−1
Y
k=0
ϕ
s
a
c
|X
(τ
k
)
ϕ
c
τ
k+1
|X
(τ
k
)
·
ν
Y
k=0
f
ι
k
(X
ι
k
|θ).
I
θ, ϑ |X
(τ
ν
)
= E
θ
ln
p
ρ,τ
ν
X
(τ
ν
)
|θ
p
ρ,τ
ν
X
(τ
ν
)
|ϑ
= E
θ
ν
X
k=0
ln
f
ι
k
( X
ι
k
|θ , )
f
ι
k
( X
ι
k
|ϑ )
.
{χ
i |x
(τ
n−1
)
, i ∈ I}, n = 1, 2, . . .
χ
i |x
(t
n−1
)
= 1, (n−1)
x
(t
n−1
)
n
X
i
ξ
i
, χ
i |x
(t
n−1
)
=
0 χ
I
θ, ϑ |X
(τ
ν
)
=
∞
X
n=1
X
i ∈I
E
θ
χ
i |X
(t
n−1
)
ln
f
i
(X
i
|θ)
f
i
(X
i
|ϑ)
=
X
i ∈I
∞
X
n=1
E
θ
χ
i |X
(t
n−1
)
E
θ
ln
f
i
(X
i
|θ)
f
i
(X
i
|ϑ)
=
X
i∈I
∞
X
n=0
P
θ
(ν
i
> n) · I(θ, ϑ |ξ
i
)
ìîìåíò îñòàíîâêè ν êîòîðîãî êîíå÷åí: Eθ ν < ∞. Òîãäà X (τν ) I θ, ϑ | X = Eθ νi · I(θ, ϑ | ξi ). (3.5) i ∈I  ñëó÷àå ðåãóëÿðíûõ ñòàòèñòè÷åñêèõ ýêñïåðèìåíòîâ àíàëîãè÷íîå óòâåð- æäåíèå ñïðàâåäëèâî äëÿ ôèøåðîâñêîé èíôîðìàöèè J (θ, ϑ | X) ïðè âñåõ ϑ, ïðèíàäëåæàùèõ íåêîòîðîé îêðåñòíîñòè U (θ) òî÷êè ϑ = θ. Ä î ê à ç à ò å ë ü ñ ò â î. Êàê è â ïðåäëîæåíèè 3.2, äîñòàòî÷íî äîêàçàòü ñïðà- âåäëèâîñòü ôîðìóëû (3.5) òîëüêî äëÿ ðàçëè÷àþùåé èíôîðìàöèè. Äëÿ ýêñïåðèìåíòà ñ óïðàâëåíèåì ρ (τν ) p ( X | θ ) = p ρ,τν X |θ = ν−1 Y Yν (τν ) (τk ) (τk ) ϕ s as | X ϕ s ac | X ϕc τk+1 | X · fιk (Xιk | θ). k=0 k=0 Ñëåäîâàòåëüíî, ðàçëè÷àþùàÿ èíôîðìàöèÿ ν p ρ,τν X(τν ) | θ X fιk ( Xιk | θ , ) I θ, ϑ | X(τν ) = Eθ ln = Eθ ln . p ρ,τν X(τν ) | ϑ fιk ( Xιk | ϑ ) k=0 Îïðåäåëèì ïîñëåäîâàòåëüíîñòü ñåìåéñòâ èíäèêàòîðíûõ ôóíêöèé (τn−1 ) {χ i | x , i ∈ I}, n = 1, 2, . . . ïîëàãàÿ χ i | x(tn−1 ) = 1, åñëè ýêñïåðèìåíò íå áûë îñòàíîâëåí äî (n−1) -ãî øàãà âêëþ÷èòåëüíî ñ ðåçóëüòàòîì x(tn−1 ) è áûëî ïðèíÿòî ðåøåíèå íà n -ì øàãå íàáëþäàòü êîïèþ Xi ñëó÷àéíîãî ýëåìåíòà ξi , è ïîëàãàÿ χ i | x(tn−1 ) = 0 â ïðîòèâíîì ñëó÷àå.  òåðìèíàõ èíäèêàòîðíûõ ôóíêöèé χ ðàçëè÷àþùàÿ èíôîðìàöèÿ ïðèíèìàåò âèä X ∞ X f (X | θ) (τν ) (tn−1 ) i i I θ, ϑ | X = Eθ χ i | X ln = fi (Xi | ϑ) n=1 i ∈I ∞ ∞ XX (tn−1 ) fi (Xi | θ) X X Eθ χ i | X Eθ ln = Pθ (νi > n) · I(θ, ϑ | ξi ) fi (Xi | ϑ) i ∈I n=1 n=0 i∈I (â ñèëó êîíå÷íîñòè ìîìåíòà îñòàíîâêè ñóììû â ïðàâîé ÷àñòè ýòîãî ðàâåí- ñòâà ìîæíî ïåðåñòàâëÿòü). 35
Страницы
- « первая
- ‹ предыдущая
- …
- 33
- 34
- 35
- 36
- 37
- …
- следующая ›
- последняя »