Составители:
Рубрика:
66
[
]
( ) ( ) / ( )
=
r x R k x F x
, 
он  вводится  в  кодовое  слово  блока,  поэтому  оно  всегда  без  остатка  делится  на 
порождающий  многочлен. В стандартах по цифровой звукозаписи эта математическая 
операция записывается в другом виде 
1
0
( ) ( ) mod ( ), ( ) .
−
= =
= = ⋅ =
∑ ∑
r n
i r i
i i
i i r
r x a x I x x F x I x a x
При
декодировании
кодовые
слова
также
делятся
на
порождающий
многочлен
. 
Если
остаток
от
деления
равен
нулю
 - 
в
блоке
ошибок
нет
.  
Код Рида - Соломона 
Код  Рида  -  Соломона
  (RS) 
предназначен
как
для
обнаружения
, 
так
и
для
исправления
ошибок
и
широко
используется
при
цифровой
записи
звука
на
магнитной
ленте
, 
оптических
и
магнитных
дисках
. 
Это
линейный
блоковый
недвоичный
циклический
код
в
поле
Галуа
 GF(2
m
) . 
Он
относится
к
группе
МДР
, 
поэтому
при
выбранных
значениях
n
и
k
у
него
наибольшее
кодовое
расстояние
и
лучшая
исправляющая
способность
. 
Максимальная
длина
кода
определяется
равенством
2 1
= −
m
n
. 
Часто
используются
укороченные
коды
  RS, 
у
которых
отбрасываются
старшие
разряды
. 
Важно
, 
что
кодовое
расстояние
укороченного
кода
такое
же
, 
как
у
исходного
. 
Главное
, 
код
  RS 
имеет
эффективные
алгебраический
методы
декодирования
. 
Поле
кода
задается
производящим
многочленом
F
(
x
) 
и
примитивным
элементом
.   
Кодирование
кода
  RS
производится
с
помощью
проверочной
матрицы
  H. 
Она
состоит
из
n
столбцов
и
r
строк
. 
Номер
столбца
i 
(
справа
на
лево
),    0
≤
i
≤
n
-1, 
номер
строки
j 
(
сверху
вниз
) , 
0 
≤
 i  
≥
r
-1
.
На
рис
.7.2. 
приведен
алгоритм
кодирования
кода
 RS (28,24) 
в
поле
Галуа
 2
8
, 
запатентованный
фирмой
 Sony 
для
системы
 CD.  
В
этом
алгоритме
входное
информационное
слово
длиной
k
преобразуется
в
кодовое
, 
в
которое
добавляются
r
неизвестных
проверочных
символов
. 
Эти
символы
необходимо
определить
. 
Для
этого
с
помощью
проверочной
матрицы
составляется
и
решается
система
из
r
уравнений
относительно
неизвестных
0 1 1
, ...
−
r
x x x
. 
При
этой
операции
используется
транспонирование
  – 
преобразование
вектор
-
строка
в
вектор
-
столбец
. 
В
результате
решения
проверочные
символы
определяются
в
матричной
форме
с
помощью
матрицы
постоянных
коэффициентов
M
(r
×
r) 
и
полусиндромов
S
j 
.      
7 13
in n 1 r
V ,...
−
= α α
информационное
слово
7 13
cd n 1 r r 1 0
V ,... , x ....x
− −
= α α
кодовое слово
решение системы
из r уравнений
T
cd
H(n r) V 0
× × =
H(n r)
×
транспонирование
T
cd
V
проверочная
матрица
( )
n 1
i
j
j in
i r
S V
−
=
= α ⋅
∑
вычисление полусиндромов
k
n k r
− =
i (n 1).....r
= −
j (r 1).....0
= −
i, j
номера(локаторы) символов в блоке
−
вычисление проверочных
символов
М(r r) матрица
рассчитанных
коэффициентов
× −
o o
r 1 r 1
x S
.... M(r r) ........
x S
− −
= × ⋅
Рис.7.2.. Алгоритм кодирования кода Рида Соломона 
Страницы
- « первая
 - ‹ предыдущая
 - …
 - 64
 - 65
 - 66
 - 67
 - 68
 - …
 - следующая ›
 - последняя »
 
