Составители:
Рубрика:
188
–1 x
1
()
21 =−y ,
()
101 −=y .
5.
()
2;1− и
()
10;1 − - точки перегиба графика функции, которая обращена выпук-
лостью вверх на промежутке
()
1;1− и выпуклостью вниз на промежутках
)1;(
−
−
∞
и
()
∞+;1 .
б)
3
2+= хy .
1. Область определения (
∞
+
∞− ; ).
2.
3
2
)2(3
1
+
=
′
х
y
;
3
5
)2(9
2
+
−=
′′
х
y
.
3.
0≠
′′
y , y
′′
не существует при 2
−
=
x (но данная функция определена при
2−=x ).
4. Определим знак
y
′′
слева и справа от точки 2
−
=
x .
–2
x
()
02 =−y .
5. Точка
()
0;2− – точка перегиба графика функции, обращенной выпуклостью
вниз на промежутке
(
)
2;−∞
−
и выпуклостью вверх на промежутке
()
+∞− ;2 .
в)
3
1
x
y = .
1. Область определения
()
(
)
+
∞∞− ;00; U .
2.
4
3
x
y −=
′
;
5
12
x
y =
′′
.
3.
0≠
′′
y , y
′′
не существует при 0
=
x (при 0
=
x функция не определена).
4. Определим знак
y
′′
слева и справа от точки 0
=
x .
0
x
Страницы
- « первая
- ‹ предыдущая
- …
- 190
- 191
- 192
- 193
- 194
- …
- следующая ›
- последняя »
