ВУЗ:
Составители:
Рубрика:
t
dx
dt
= a(x, y),
dy
dt
= b(x, y),
a > 0 Ω
dy
dx
=
b(x, y)
a(x, y)
.
y
x
a = (a, b) gradu =
∂u
∂x
,
∂u
∂y
u a
u
a = (a, b) (x, y) ∈ Ω t
a Ω
Ω
a t
u : Ω → R
u
u ∈ C
1
(Ω)
u
ïðîõîäèò îäíà è òîëüêî îäíà õàðàêòåðèñòèêà óðàâíåíèÿ (2.70). Åñëè ââåñòè
ïàðàìåòð t, èçìåíÿþùèéñÿ âäîëü õàðàêòåðèñòè÷åñêîé êðèâîé, òî äèå-
ðåíöèàëüíûå óðàâíåíèÿ (2.71) õàðàêòåðèñòèê ìîæíî ïåðåïèñàòü â âèäå
dx dy
= a(x, y), = b(x, y), (2.72)
dt dt
îïðåäåëÿþùåì õàðàêòåðèñòèêè óðàâíåíèÿ (2.70) â ïàðàìåòðè÷åñêîé îð-
ìå.
Åñëè â äîïîëíåíèå ê óñëîâèÿì (jj) âûïîëíÿåòñÿ óñëîâèå a > 0 â Ω, òî,
ðàçäåëèâ âòîðîå óðàâíåíèå â (2.72) íà ïåðâîå, ïîëó÷àåì ñëåäóþùåå óðàâ-
íåíèå
dy b(x, y)
= . (2.73)
dx a(x, y)
Óðàâíåíèå (2.73) îïðåäåëÿåò õàðàêòåðèñòèêè óðàâíåíèÿ (2.70) â âèäå ãðà-
èêà ñîîòâåòñòâóþùåãî ðåøåíèÿ y óðàâíåíèÿ (2.73) êàê óíêöèè îò àáñ-
öèññû x.
Ëåâóþ ÷àñòü óðàâíåíèÿ (2.70) ìîæíî èíòåðïðåòèðîâàòü
êàê ñêàëÿðíîå
∂u ∂u
ïðîèçâåäåíèå âåêòîðà a = (a, b) íà âåêòîð gradu = ∂x , ∂y , ò. å. êàê ïðî-
èçâîäíóþ îò óíêöèè u ïî íàïðàâëåíèþ âåêòîðà a. Ïîñêîëüêó óêàçàííàÿ
ïðîèçâîäíàÿ ðàâíà íóëþ â ñèëó (2.70), òî îòñþäà ñëåäóåò, ÷òî ëþáîå ðåøå-
íèå óðàâíåíèÿ (2.70) ñîõðàíÿåò ïîñòîÿííîå çíà÷åíèå âäîëü ëþáîé õàðàêòå-
ðèñòèêè.
Êàê è â ï. 2.4., áóäåì èñïîëüçîâàòü ãèäðîäèíàìè÷åñêóþ èíòåðïðåòàöèþ
óðàâíåíèÿ (2.70), ò. å. ñ÷èòàòü, ÷òî (2.70) îïèñûâàåò ñòàöèîíàðíûé ïðî-
öåññ ïåðåíîñà íåêîòîðîé âåëè÷èíû u â ñðåäå, äâèæóùåéñÿ ñî ñêîðîñòüþ
a = (a, b), êîòîðàÿ çàâèñèò îò (x, y) ∈ Ω, íî íå çàâèñèò îò âðåìåíè t. Ýòà
èíòåðïðåòàöèÿ óäîáíà òåì, ÷òî ïîçâîëÿåò îòîæäåñòâèòü õàðàêòåðèñòèêè
óðàâíåíèÿ (2.70) (÷èñòî ìàòåìàòè÷åñêèå îáúåêòû) ñ àçîâûìè òðàåêòîðè-
ÿìè ñèñòåìû (2.72), êîòîðûå â ñòàöèîíàðíîì ñëó÷àå ñîâïàäàþò ñ ëèíèÿìè
òîêà ïîëÿ ñêîðîñòåé a â îáëàñòè Ω. Ïîñëåäíèå èìåþò íàãëÿäíûé èçè÷å-
ñêèé ñìûñë ëèíèé â îáëàñòè Ω, ïî êîòîðûì äâèæóòñÿ ÷àñòèöû æèäêîñòè
â ñòàöèîíàðíîì ïîëå ñêîðîñòåé a. Ïðè òàêîé èíòåðïðåòàöèè ïàðàìåòð t,
âõîäÿùèé â óðàâíåíèå (2.72), èìååò ñìûñë âðåìåíè.
Íàïîìíèì, ÷òî óíêöèÿ u : Ω → R, íå ðàâíàÿ òîæäåñòâåííî êîíñòàíòå,
íàçûâàåòñÿ ïåðâûì èíòåãðàëîì ñèñòåìû (2.71), åñëè u îáðàùàåòñÿ â êîí-
ñòàíòó íà ëþáîì åå ðåøåíèè. àññóæäàÿ, êàê è â ï. 2.4, ëåãêî óáåäèòüñÿ
â òîì, ÷òî óíêöèÿ u ∈ C 1 (Ω) îïèñûâàåò ïåðâûé èíòåãðàë ñèñòåìû (2.71)
òîãäà è òîëüêî òîãäà, êîãäà u ÿâëÿåòñÿ ðåøåíèåì óðàâíåíèÿ (2.70). Äðó-
ãèìè ñëîâàìè, ñïðàâåäëèâ ñëåäóþùèé àíàëîã ëåììû 2.3, óòâåðæäàþùèé
ýêâèâàëåíòíîñòü çàäà÷è íàõîæäåíèÿ ðåøåíèÿ óðàâíåíèÿ (2.70) è çàäà÷è
ðåøåíèÿ ñèñòåìû (2.71) îòíîñèòåëüíî åãî õàðàêòåðèñòèê.
138
Страницы
- « первая
- ‹ предыдущая
- …
- 136
- 137
- 138
- 139
- 140
- …
- следующая ›
- последняя »
