Классические методы математической физики - 166 стр.

UptoLike

Составители: 

x at = x
0
at
0
x + at = x
0
+ at
0
K(x
0
, t
0
) = K
+
(x
0
, t
0
) K
(x
0
, t
0
)
n
n
2
u
t
2
a
2
n
X
i=1
2
u
x
2
i
= F
x, t, u, u,
u
t
.
F
(x, t) R
n
× R
n
t
Γ
+
(x
0
, t
0
) Γ
(x
0
, t
0
)
2
u
t
2
n
X
i,j=1
a
ij
(x, t)
2
u
x
i
x
j
= F (x, t, u, u,
u
t
),
a(x, t, ψ,
ψ
t
, ψ)
ψ
t
2
n
X
i,j=1
a
ij
(x, t)
ψ
x
i
ψ
x
j
= 0.
(x
0
, t
0
)
2
u
t
2
a(x, t)
2
u
x
2
= F (x, t, u,
u
x
,
u
t
)
(x, t)
D R × R
t
a(x, t) > 0 (a(x, t) > 0 (x, t) D)
ψ
t
2
a
2
(x, t)
ψ
x
2
= 0.
[ψ/t + a(x, t)ψ/x][ψ/∂t a(x, t)ψ/∂x] = 0
ψ
1
(x, t) = C
1
ψ
2
(x, t) = C
2
C
1
C
2
óðàâíåíèÿìè x − at = x0 − at0 è x + at = x0 + at0 . Óêàçàííûå ïðÿìûå ÿâ-
ëÿþòñÿ ãðàíèöàìè äâóìåðíîãî êîíóñà K(x0, t0 ) = K +(x0 , t0 ) ∪ K −(x0 , t0 ),
èçîáðàæåííîãî íà ðèñ.4.2á.
   Çàìå÷àíèå 4.2. Âñå, ÷òî ãîâîðèëîñü âûøå î õàðàêòåðèñòèêàõ äëÿ n
 ìåðíîãî âîëíîâîãî óðàâíåíèÿ (4.28), îñòàåòñÿ ñïðàâåäëèâûì è äëÿ n 
ìåðíîãî êâàçèëèíåéíîãî óðàâíåíèÿ âèäà
                           n
                ∂ 2u           2
                                                      
                          X  ∂   u                  ∂u
                     − a2          = F x, t, u, ∇u,      .           (4.38)
                ∂t 2         ∂x2i
                            i=1
                                                    ∂t

Çäåñü F  çàäàííàÿ óíêöèÿ ñâîèõ àðãóìåíòîâ. Äðóãèìè ñëîâàìè, óðàâíå-
íèå (4.38) òàê æå, êàê è (4.28), èìååò ãèïåðáîëè÷åñêèé òèï â êàæäîé òî÷êå
(x, t) ∈ Rn × Rnt , à åãî õàðàêòåðèñòèêàìè ÿâëÿþòñÿ õàðàêòåðèñòè÷åñêèå
êîíóñû Γ+ (x0, t0 ) è Γ− (x0 , t0 ) òàê æå, êàê è ãèïåðïëîñêîñòè (4.33).
   Îäíàêî â ñëó÷àå áîëåå îáùåãî êâàçèëèíåéíîãî óðàâíåíèÿ âèäà
                      n
               ∂ 2u X                ∂ 2u                    ∂u
                   −     aij (x, t)        = F (x, t, u, ∇u,    ),      (4.39)
               ∂t2 i,j=1            ∂xi∂xj                   ∂t

ãèïåðáîëè÷åñêîãî ïðè âûïîëíåíèè (1.22), åãî õàðàêòåðèñòè÷åñêîå óðàâíå-
íèå èìååò âèä íåëèíåéíîãî óðàâíåíèÿ ñ ïåðåìåííûìè êîýèöèåíòàìè
                              2 X  n
                  ∂ψ          ∂ψ                  ∂ψ ∂ψ
       a(x, t, ψ,    , ∇ψ) ≡     −     aij (x, t)         = 0.   (4.40)
                  ∂t          ∂t         i,j=1
                                                  ∂xi ∂xj

Ïîýòîìó íàõîæäåíèå õàðàêòåðèñòèê óðàâíåíèÿ (4.39) â ÿâíîì âèäå âîç-
ìîæíî ëèøü â èñêëþ÷èòåëüíûõ ñëó÷àÿõ, õîòÿ ìîæíî ñòðîãî ïîêàçàòü, ÷òî
÷åðåç êàæäóþ òî÷êó (x0 , t0 ) ïðîõîäÿò äâå õàðàêòåðèñòèêè óðàâíåíèÿ (4.39).
   Òî æå ñàìîå ñïðàâåäëèâî è äëÿ îäíîìåðíîãî àíàëîãà

                    ∂ 2u           ∂ 2u               ∂u ∂u
                         − a(x, t)      = F (x, t, u,   , )             (4.41)
                    ∂t2            ∂x2                ∂x ∂t
óðàâíåíèÿ (4.39). Óñëîâèåì åãî ãèïåðáîëè÷íîñòè â òî÷êå (x, t) (ëèáî â îá-
ëàñòè D ⊂ R × Rt ) ÿâëÿåòñÿ óñëîâèå a(x, t) > 0 (a(x, t) > 0 ∀(x, t) ∈ D), à
õàðàêòåðèñòè÷åñêîå óðàâíåíèå èìååò âèä
                       2               2
                       ∂ψ        2       ∂ψ
                             − a (x, t)        = 0.                    (4.42)
                        ∂t               ∂x
Çàïèñàâ åãî â âèäå [∂ψ/∂t + a(x, t)∂ψ/∂x][∂ψ/∂t − a(x, t)∂ψ/∂x] = 0, ïðè-
õîäèì ñ ó÷åòîì çàìå÷àíèÿ 4.1 ê âûâîäó, ÷òî óðàâíåíèå (4.41) èìååò äâà
ñåìåéñòâà õàðàêòåðèñòèê ψ1 (x, t) = C1 è ψ2 (x, t) = C2 . Çäåñü C1 è C2 

                                      166