Классические методы математической физики - 193 стр.

UptoLike

Составители: 

ρ = 0
ρ
r = 0 ρ = 0
y y z
1
|x y|
Ψ(k|x y| ωt),
1
p
|x y|
(2)
Ψ(k|x y|
(2)
ωt).
|x y|
(2)
x y
R
3
x y z = 0
R
3
R
R
3
R
2
ρ, ϕ
kρ ωt
a ρ = 0
R
2
ρ = 0
ρ = 0
Ψ
îïèñûâàåò öèëèíäðè÷åñêèå âîëíû íà áîëüøèõ ðàññòîÿíèÿõ îò îñè ρ = 0
èëè, êàê ãîâîðÿò, àñèìïòîòè÷åñêè ïðè ρ → ∞.
   Çàìå÷àíèå 2.1. Íàðÿäó ñî ñåðè÷åñêèìè (ëèáî öèëèíäðè÷åñêèìè)
âîëíàìè ñ öåíòðîì â òî÷êå r = 0 (ëèáî îñüþ ρ = 0) ìîæíî ðàññìàòðè-
âàòü ñåðè÷åñêèå (ëèáî öèëèíäðè÷åñêèå) âîëíû ñ öåíòðîì â ïðîèçâîëüíîé
òî÷êå y (ñ îñüþ, ïðîõîäÿùåé ÷åðåç òî÷êó y ïàðàëëåëüíî îñè z ). Óêàçàííûå
âîëíû îïèñûâàþòñÿ óíêöèÿìè
           1                          1
                Ψ(k|x − y| ∓ ωt), p           Ψ(k|x − y|(2) ∓ ωt).
        |x − y|                    |x − y|(2)
Çäåñü |x − y|(2) îáîçíà÷àåò äâóìåðíîå ðàññòîÿíèå ìåæäó òî÷êàìè x, y ∈
R3 , ò. å. ðàññòîÿíèå ìåæäó ïðîåêöèÿìè òî÷åê x è y íà ïëîñêîñòü z = 0.
   Çàìå÷àíèå 2.2. Àíàëîãè÷íî ïëîñêèì âîëíàì (2.3), êîòîðûå ÿâëÿþòñÿ
ðåøåíèÿìè óðàâíåíèÿ (2.2) êàê â ïðîñòðàíñòâå R3 , òàê è íà ïðÿìîé R, öè-
ëèíäðè÷åñêèå âîëíû (2.10) ìîæíî ñ÷èòàòü ðåøåíèÿìè óðàâíåíèÿ (2.2) íå
òîëüêî â R3 , ÷òî åñòåñòâåííî ñ èçè÷åñêîé òî÷êè çðåíèÿ, íî è íà ïëîñêîñòè
R2 , ãäå ââåäåíû ïîëÿðíûå êîîðäèíàòû ρ, ϕ. Ïðè ïîñëåäíåé èíòåðïðåòàöèè
àçà kρ ∓ ωt ðåøåíèé (2.10) îñòàåòñÿ ïîñòîÿííîé íà áåãóùèõ ñî ñêîðî-
ñòüþ a êîíöåíòðè÷åñêèõ îêðóæíîñòÿõ ñ öåíòðîì â òî÷êå ρ = 0. Ïîýòîìó
äëÿ óíêöèé (2.10), ðàññìàòðèâàåìûõ â R2 , âìåñòî òåðìèíà öèëèíäðè÷å-
ñêàÿ âîëíà ñ îñüþ ρ = 0 èíîãäà èñïîëüçóþò òåðìèí ñåðè÷åñêàÿ âîëíà íà
ïëîñêîñòè ñ öåíòðîì â òî÷êå ρ = 0.
   Çàìå÷àíèå 2.3. Êðîìå áåãóùèõ âîëí ñóùåñòâóþò äðóãèå òèïû âîëí:
ñòîÿ÷èå, íîðìàëüíûå, ïîâåðõíîñòíûå è ò.ä. Îá ýòèõ âîëíàõ ìîæíî ïðî÷è-
òàòü, íàïðèìåð, â [3, 21℄.
   Çàìå÷àíèå 2.4. Óðàâíåíèå (2.1) ÿâëÿåòñÿ ïðîñòåéøåé ìàòåìàòè÷å-
ñêîé ìîäåëüþ, îïèñûâàþùåé ïðîöåññû èçëó÷åíèÿ è ðàñïðîñòðàíåíèÿ âîëí.
Óêàçàííàÿ ìîäåëü íå ó÷èòûâàåò ìíîãèå ýåêòû, ïðîèñõîäÿùèå ïðè ðàñ-
ïðîñòðàíåíèè âîëí â ðåàëüíûõ ñðåäàõ: íåîäíîðîäíîñòü è àíèçîòðîïíîñòü
ñðåäû, çàòóõàíèå âîëí, âûçûâàåìîå äåéñòâèåì ñèë âÿçêîñòè è òåïëîïðî-
âîäíîñòè, àçîâûå ïåðåõîäû, íåëèíåéíûå ýåêòû è ò.ä. Òåì íå ìåíåå îíà
îòðàæàåò îñíîâíûå ÷åðòû, ïðèñóùèå ìíîãèì âîëíîâûì ïðîöåññàì.  ÷àñò-
íîñòè, îíà îïèñûâàåò èçëó÷åíèå è ðàñïðîñòðàíåíèå çâóêîâûõ âîëí ìàëîé
àìïëèòóäû â îäíîðîäíîé èçîòðîïíîé æèäêîé èëè ãàçîîáðàçíîé ñðåäå áåç
ó÷åòà ýåêòîâ âÿçêîñòè è òåïëîïðîâîäíîñòè (ñì. Ÿ6 ãë.1).
   Çàìå÷àíèå 2.5. Åñëè óíêöèÿ Ψ â (2.1) ÿâëÿåòñÿ âåêòîðíîé, òî óðàâíå-
íèå (2.1) íàçûâàåòñÿ âåêòîðíûì âîëíîâûì óðàâíåíèåì. Óðàâíåíèå òàêîãî
òèïà âîçíèêàåò, íàïðèìåð, ïðè îïèñàíèè ýëåêòðîìàãíèòíûõ ïîëåé (ñì.Ÿ7
ãë.1).
   Ïðèâåäåííûå âûøå ïðèìåðû ðåøåíèé âîëíîâîãî óðàâíåíèÿ íàãëÿäíî
ïîêàçûâàþò, ÷òî îäíîãî óðàâíåíèÿ (2.1) íåäîñòàòî÷íî äëÿ îïèñàíèÿ êîí-
êðåòíîãî âîëíîâîãî ïðîöåññà, ïîñêîëüêó óðàâíåíèå (2.1) èìååò áåñ÷èñëåí-

                                   193